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19. Abstract

We report measurements on two-dimensional arrays of Josephson junctions with junction sizes down to
60 rim. Due to their small size, these junctions belong to the class of mesoscopic systems: they show behavior
which reveals the underlying quantum mechanical properties. Two energies characterize the junctions. the
Josephson energy Ej and the charging energy E,. Arrays in which Ej >> E, are superconducting around
zero bias and at zero temperature, while arrays in which E, >> Ej. called charging arrays, are insteady
insulating. This is the basis of the superconductor-to-insulator (S-I) transition.

Specifically, we measure the transport properties of arrays on both sides of the S-I transition. On the
superconducting side (Ej >> E,), we study vortices and vortex motion, i.e,, pinning barriers, depinning
currents, vortex lattices, and vortex-vortex interactions. We experimentally discovered a new vortex damping
mechanisms; moving vortices transfer energy to the junctions over which they travel in the form of a "wake."

In the charging limit (E, >> Ej), we study the array conduction properties, dominated by solitons and
their motion (a soliton is a "dressed" charge), At zero temperature, we measure a Coulomb blockade, denoted
by a threshold voltage V, below which no current flows. At higher temperatures, we measure conduction
within the blockade region, caused by the creation and disassociation of soliton-antisoliton pairs. Insteady
of the predicted Kosterlitz-Thouless-Berezinskii pair unbinding transition, we find the data to better fit a
simple thermal activation model with activation barriers 0.25 E, in the normal state and 0.25 Ec plus the
superconducting energy gap in the superconducting state.

We also study arrays in which Ej is on the order of E,. and measure a mixture of both superconducting
and charging behaviors by finding a Coulomb blockade region within the "supercurrent" branch. In addition,
we irradiate the charging arrays with microwaves, looking for single-electron tunneling (SET) oscilations. We
did not measure any evidence for SET oscillations, but instead found a shift of the curves to lower voltages,
with the amount of shift proportional to the am plitude of the rf signal.
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ABSTRACT

We report measurements on two-dimensional arrays of Josephson junctions with

junction sizes down to 60 nm by 60 nm. Due to their small size, these junctions belong to

the class of mesoscopic systems; they show behavior whic"- ,eveals the underlying

quantum mechanical properties. Two energies characterize the junctions, the Josephson

energy Ej and the charging energy Ec. Arrays in which Ej >> Ec are superconducting

around zero bias and at zero temperature, while arrays in which Ec >> Ej, called charging

arrays, are instead insulating. This is the basis of the superconductor-to-insulator (S-1)

transition.

Specifically, we measure the transport properties of arrays on both sides of the S-I

transition. On the superconducting side (Ej >> Ec), we study vortices and vortex motion,

i.e., pinning barriers, depinning currents, vortex lattices, and vortex-vortex interactions.

We experimentally discovered a new vortex damping mechanism; moving vortices

transfer energy to the junctions over which they travel in the form of a "wake".

In the charging limit (Ec >> Ej), we study the array conduction properties, dominated

by solitons and their motion (a soliton is a "dressed" charge). At zero temperature, we

measure a Coulomb blockade, denoted by a threshold voltage V1 below which no current

flows. At higher temperatures, we measure conduction within the blockade region,

caused by the creation and disassociation of soliton-antisoliton pairs. Instead of the

predicted Kosterlitz-Thouless-Berezinskii pair unbinding transition, we find the data to

better fit a simple thermal activation model with activation barriers 0.25 Ec in the normal

stl4,: and 0.25 Ec plus the superconducting energy gap in the superconducting state.

We ?Iso study arrays in which Ej is on the order oi'Ec, and measure a mixture ot both

superconducting and charging behaviors by finding a Coulomb blockade region within

the "supercurrent" branch. In addition, we irradiate the charging arrays with microwaves,
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looking for single-electron tunneling (SET) oscillations. We did not measure any

evidence for SET oscillations, but instead found a shift of the curves to lower voltages,

with the amount of shift proportional to the amplitude of the rf signal.
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CHAPTER ONF

INTRODUCTION

In recent decades, improved fabrication techniques have allowed scientists to make

ever-smaller electronic devices. This has opened up a new field of study entitled

mesoscopic physics: the study of bulk-matter systems with small enough physical size so

that the measurements reveal underlying quantum mechanical effects. For example,

scientists have used these systems to study the wave nature of the electron by measuring

what are called Quantum Conductance Fluctuations [Smith, et al. (1991), Washburn and

Webb (1986), and references therein]. In this thesis we study systems in which the

discreteness of the electronic charge influences the transport conduction properties. This

class of experiments is described by the term "charging effects".

The system in which we study charging effects is the Josephson junction, named after

Brian Josephson (he won the Nobel Prize in Physics in 1973 for his theoretical prediction

of the properties of this junction). A Josephson junction consists of two superconducting

electrodes coupled by (1) a thin insulating barrier [a superconductor-insulator-

superconductor (SIS) junction], (2) a normal metal bridge [a superconductor-normal-

superconductor (SNS) junction], (3) a narrow, superconducting bridge (a microbridge), or

(4) any region of weak superconductivity. One remarkable property of Josephson

junctions is their ability to carry supercurrent: the flow of electrons without electrical

resistance. Josephson junctions have been widely studied for the physical insights to be

gained from them, as well as for their technological importance [see Tinkham (1975)].

Because of the recent advances in fabrication, we can make junctions in which the

region where the two superconductors touch is on the order of 1000 A by 1000 A.
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Josephson

island

unit cell

Figure 1-1.

Schematic drawing of a 2D array of Josephson junctions. The array
consists of a square lattice of islands, each coupled to its nearest neighbors
through a junction.

Measurements on two of these junctions in series by Fulton and Dolan (1987) showed

that the discreteness of the electronic cha;ge affected the current-voltage (I-V)

characteristics: the presence or absence of a single electron on the superconducting

"island" between the two junctions can greatly affect the I-V curves.1 A considerable

amount of work has gone into studying these junctions, and circuits made with them [for

example, see lansiti, et al. (1989a)].

In this work we study two-dimensional (2D) arrays of small Josephson junctions.

Figure 1-1 shows a portion of a 2D array: a square lattice of superconducting islands,

with each island coupled to its nearest neighbors through a junction (denoted as an "W').2

We originally studied arrays as a means to better understand single junctions. (In single

1Employing these junctions, scientists have made circuits, called single-electron-tunneling (SET)
transistors, to use as sensitive measurement devices [LaFarge, et al. (1991)).
2 Though not studied here, other lattices such as triangular lattices are easily fabricated.
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-Q +Q
superconductor superconductor

[W~liCLinsulator I~ i6 D

Figure 1-2.

Schematic drawing of a Josephson junction (SIS); two superconducting
elecrodes seperated by a thin insulating barrier. Each electrode has
associated with it a Ginzburg-Landau order parameter T = I'*exp(io) and
a charge Q.

junctions, close proximity to the leads largely washes out the interesting effects.1

Junctions in the interior of an array, however, are shielded from the leads by other, high-

impedance junctions.) It quickly became clear to us, however, that more interesting were

traditional array phenomena (vortices, for example) in the presence of charging effects.

We begin the discussion of arrays by an introduction to the array elements: single

junctions. Figure 1-2 shows a schematic drawing of an SIS junction (the type we study in

this thesis): two superconducting electrodes separated by a thin, insulating barrier. The

superconducting state of each electrode may be described by a Ginzburg-Landau order

parameter 'L,R = I'L,RIe L.R, where L and R refer to the left and right electrodes,

respectively. As we use the same material for both electrodes, away from the junction

TL[ = [''RI. What becomes important is the phase difference across the junction

0- OR - 'L- Also shown in Fig. 1-2, as these junctions have a capacitance C associated

with them, we define a junction charge Q.

To calculate the Hamiltonian, we begin with the energy associated with a Josephson

junction, as derived by Ambegaokar and Baratoff (1963), -EJcosO. Called the Josephson

energy, Ambegaokar and Baratoff give Ej as

1See Johnson, et at. (1990) and Cieland, et al. (1992).
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hAA
Ej =- r-tanh0.18e R. 2kBT (

where A is the superconducting gap and R, is the normal-state resistance of the junction.

The values of Ej we quote in the rest of this thesis are given in the low-temperature limit:

tanh(A/2kBT) - 1 -. Ej-= hA/8e 2Rn. To -EjcosO we add the energy stored in the

capacitor, Q212C. This gives the basic Hamiltonian Ho as'

Ho = Ec ]Q2- Ej cos ¢(12
2

where E-

2C"

The solution of this Hamiltonian is made difficult by the fact that 0 and Q do not

commute,

[4),Q]= 2ie (1.3)

which leads to the uncertainty relation

A4)A(Q / 2e) Ž 1 (1.4)

Therefore, in an experiment which allows us to accurately determine Q, we cannot

measure 0 (or vice versa).

This Hamiltonian has been used to solve for the junction dynamics in two limits; Ej

>> Ec and Ec >> Ej. Stewart (1968) and McCumber (1968) treat the first case in the

I The full Hamiltonian, described in Chapter 2, will have additional terms representing the bias source and
the dissipation mechanisms.

4



resistively-and-capacitively-shunted-junction (RCSJ) model. In this model, they treat 0

as a "well-defined" variable and write Q in terms of 4 (using Q=CV and the ac Josephson

equation, V = hý / 2e). We show the I-V curve given by this model in Fig. 1-3(a) (see

Sec. 2.1 for the full derivation). Increasing the current from zero, it passes through the

junction in the form of a supercurrent, so that no voltage develops. When the current

exceeds a critical current 1c, however, the junction may no longer carry a dc supercurrent.

The dc current is carried instead by quasiparticles. For the junctions we study, at lc the

voltage junps to a value 2A/e, characteristic of quasiparticles. Sweeping the current back,

for our junctions we measure a hysteretic curve: the voltage does not drop back to zero at

Ic but at some lower current, called the retrapping current It. We call these junctions and

arrays made out of them "superconducting", as their I-V curves show a supercurrent

branch.

In the other limit, Ec >> Ej, we treat Q as the well-defined variable) Though it is

possible to write 0 in terms of Q, we typically drop the -EjcosO term in the Hamiltonian

altogether. For junctions in the normal state, this is rigorously allowed as Ej = 0.2 In

fact, as it is easier to treat these junctions in the normal state than in the superconducting

state, we will do so and only point out the differences between the two as they arise. In

Fig. 1-3(b) we show a sample I-V curve for two of these junctions in series. 3 Instead of a

supercurrent branch, no current flows for voltages below a threshold voltage Vt. This

region of high resistance is called the Coulomb blockade. These junctions and arrays

made with them are referred to as "charging", due to the predominance of charging

effects which gives rise to this blockade region.

For junctions with Ej on the order of E., it is significantly more difficult to solve for

the junction dynamics. Experimentally, we find these junctions to show a mixture of

IFor a review of junctions in this limit see Averin and Likharev (1991).
2 We achieve normal state junctions by applying a suitably large magnetic field to eliminate the
superconductivity.
3For single junctions this effect is washed out due to lead effects.

5



(a) V

2A/e -

Ir Ic
(b) V

Figure 1-3.

Model I-V curves for (a) a single superconducting junction and (b) a two
charging junctions in series, as described in the text. In (a), we see the
supercurrent branch, the switch up to the quasiparticle branch at the critical
current, and the switch back down at the retrapping current. In (b), we see the
Coulomb blockade region for voltages below the threshold voltage.
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superconducting and charging effects. Thus, we refer to them as ,.ansitional".

Figure 1-4 shows data from 2D arrays in (a) the superconducting limit and (b) the

charging limit. In (a) we see the supercurrent branch and the "switch" to the quasiparticle

branch. In our arrays, we do not measure one switch as with the single junction [Fig. 1-

3(a)], but measure many switches. These are thought to be due to individual rows

switching, as described in Chapter 4--the large spread in currents where the rows switch

may be due to inhomogeneity within the array. In Fig. 1-4(a) we see that the retrapping

current is roughly zero on this scale. Figure 1-4(b) shows the Coulomb blockade region

of a charging array in the normal state. 1 The corner is somewhat rounded compared to

that in Fig. 1-3(b). As we will discuss in Chapter 6, this rounding is expected fur arrays.

The differential conductance within the blockade region for this sample is greater than 10

GQ.

These large scale properties may be viewed, in some sense, as simple extensions of

single junction effects. However, more interesting are the finer scale details which can

only be described by excitations in the arrays. For the superconducting arrays, the

excitations are units of circulating currents called vortices. Seen in Fig. 1-5, these

circulating currents are centered around a unit cell, with the strength of the currents

falling off with the radial distance away from the center. A vortex may have one of two

"signs", depending on the sense of rotation. Vortices interact with a logarithmic

potential; those of the same sign repel, while those of opposite signs attract and may form

bound pairs. We mention four more important points about vortices. (1) Vortices are

introduced into the array with an applied, external magnetic field or by a thermal

activation process, in which vortex-antivonex pairs are activated out of the "vacuum". 2

(2) In a model by Kosterlitz and Thouless (1973) and Berezinskii (1970) (KTB), altered

to apply to Josephson junction arrays, only bound vortex-antivortex pairs exist below a

I The steps in this figure are the result of the method used for digitizing data.
2We arbitrarily define a vortex as having counterclockwise current rotation. An antivortex has clockwise
rotation.
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Figure 1-4.

Current-voltage (I-V) curves for (a) sample #4, a superconducting array
and (b) sample #10, a charging array in the normal state. The temperature
for both curves is T = 15 inK. The arrows in (a) show the direction of the
current sweep. In (b), the curve is reversible.
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Figure 1-5.

Schematic drawing of the currents which form a vortex. Shown are the
islands which form a 2D array, and arrows which represent the vortex
currents (the lengths of which give the current magnitude). The junctions
which connect the islands are not shown.

critical temperature TKTB. For temperatures above TKTB, however, enough thermal

energy exists to separate the pairs, so that the system may have free vortices. (3) We

measure vortex motion by applying a current bias and reading a voltage drop. The bias

current applies aj x B force to a vortex, with the force being perpendicular to the current

direction. Vortices moving across the array create a voltage drop, with the amount of

drop proportional to the average vortex velocity times the vortex density. (4) At T = 0,

the vortex density is proportional to the external magnetic field. At certain densities, the

vortices form a rigid lattice commensurate with the array lattice.

In charging arrays (Ec >> Ej), vortices are not present. The excitations instead are

called solitons. To describe a soliton, we must first consider that each island in a

9



24',

Figure 1-6.

Schematic drawing of the charge e and polarizations which form a
soliton. The junctions connecting the islands are not shown.

charging array has a well-defined charge Q which changes in units of e as electrons

tunnel between islands. Because of capacitive coupling, charges in the array polarize

neighboring islands. A single electron added to (removed from) an island in an otherwise

neutral array together with the resulting polarizations is the soliton (antisoliton), a

schematic drawing of which is given in Fig. 1-6. [We follow Bakhvalov, et al. (1991) in

using the term soliton. However, these "dressed" charges do not fit the usual definition

of the term (D. S. Fisher, private communication)]. The polarizations fall off as - In(l/r)

with the radial distance r away from the soliton center. Solitons share many similarities

with vortices: solitons interact with a logarithmic potential, and those of the same charge

repel, while those of opposite charge attract and may form bound pairs. The four points

made about vortices also apply to solitons. (1) Solitons are induced by a large enough

10



bias voltage (which pulls them from cne electrode to the other), and by thermal

activation, in which soliton-antisoliton pairs are activated out of tht. "vacuum".

Bakhvalov, et al. (1991) aOso predict that solitons may be induced with an external

electric field, created by applying a voltage between the array and a nearby ground plane.

However, this has not been confirmed experimentelly. (2) Yoshikawa, et al. (1987) and

Widom and Badjou (1988) predict the occurance of a KTB transition for the unbinding of

soliton-antisoliton pairs. However, as we will discuss in Chapter 6, for the arrays we and

other groups have measured the KTB model does not appear to apply-' (3) We determine

soliton -notion by applying a force to the solitons, by a bias voltage, and measure the

electrical (soliton) current. (4) Bakhvalov, etal. (1991) predict that solitons may form

lattices commensurate with the array lattice. However, this has not yet been

experimentally observed.

The data presented in Figs. 1-4(a) and (b) are taken at sample temperatures of T 15

inK, close to the T -* 0 limit. At higher temperatures, we measure finite resistances in

the supercurrent branch [Fig. 1-7(a)j and finite conductances in the Coulomb blockade

region [Fig. 1-7(b)]. As the I-V curves around zero bias appear to be linear, we can

deiine a zero-bias resistance Ro. We study Ro as a function of temperature to better

understand the properties of solitons and vortices. Figure 1-7(c) shows Ro vs. TITc for the

ten samples presented in this thesis. The lower five curves, in which Ro monotonically

decreases with decreasing T, are for samples with Ej > Ec (superconducting arrays). The

upper three curves, in which Ro monotonically increases with decreasing T, are for

samples with Ec > Ej (charging arrays). The samples which give the middle two curves

(the ones which cross close to zero temperature) fall into the category of transitional

arrays.

Figure 1-7(c) is a graphical representation of the superconductor-to-insulator (S-I)

1Mooij, ei al. (1990) and Delsing, et al. (1992).
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transition. 1 As T -- 0, arrays with large Ej/Ec become superconducting around zero bias

while those with small Ej/Ec become insulating. It is not our intent to study the S-I

transition itself. The goal of this thesis is to study, in detail, the conduction mechanisms

of arrays on both sides of the S-I transition.

The outline of this thesis is as follows. In the second chapter we give a theoretical

overview of these junctions and arrays. The third chapter describes the details of the

experiment: array design, fabrication, and measurement. In Chapters 4, 5, and 6 we

discuss the experimental results of the superconducting, transitional, and charging arrays,

respectively. Chapter 7 gives details of a side experiment in which we irradiate a

charging array with microwaves. We conclude in Chapter 8. Appendices A, B, and C

discuss the design of the "diamond" arrays, detailed information on the microwave line

losses, and the different sample names used, iespectively.

1See Haviland, et al. (1989), Fisher (1990), Fisher, et al. (1990), and Granato and Kosterlitz (1990).
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Figure 1-7.

Figures (a) and (b) are I-V curves for samples #4 and #10, respectively,
showing the definition of the zero-bias resistance Ro for both the
superconducting and charging arrays. The sample temperature in both
curves is T = 300 miK. Figure (c) shows Ro as a function of TIT, for the
ten arrays presented in this thesis.
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CHAPTER TWO

THEORETICAL OVERVIEW

In this chapter we give a theoretical overview of the array experiments. The

discussion is organized as follows: Secs. 2.1 and 2.2 describe the theory for

"superconducting" single junctions and arrays, respectively. Sections 2.3 and 2.4 present

the theory for the "charging" junctions and arrays. All of the discussion in this chapter is

in the T = 0 limit. We save discussion of the T • 0 results for Chapters 4, 5, and 6.

2.1 Superconducting Junctions

We begin this description of superconducting junctions by presenting the full junction

Hamiltonian H(O,Q) (Sec. 2.1.1) and using it to derive a single junction equation of

motion (Sec. 2.1.2). This equation of motion forms the basis of the resistively-and-

capacitively-shunted-junction (RCSJ) model, which we describe in Sec. 2.1.3. Section

2.1.4 presents the intuitive washboard model, and shows how it is used to derive junction

I-V curves.

2.1.1 Single Junction Hamiltonian

In Chapter 1 we presented the basic Hamiltonian Ho for a junction

Ho - Ej cos 0 (2.1)
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The full Hamiltonian H(O,Q) will include a term representing the bias source Hs, and a

term representing dissipation He,

H(O,Q)= Ho + Hs + He (2.2)

To get the source term Hs, we calculate the negative of the energy fed into the junction

by a current bias,

Hs = -I(t)V(t)dt (2.3)

Using the ac Josephson equation

v() h dop (2.4)
2 e dt

and integrating by parts, we get

2e 2e dt (2.5)

Iff is constant in time, the second term gives zero and

Hs = i - 0 (2.6)

2e

The dissipation term He is more difficult to quantify. We will leave this term

undefined as we are more interested in damping in arrays due to vortex dissipation, than

in single junction damping. [Bobbert (1992) shows numerically that for the junctions we

measure, vortex dissipation is largely independent of single junction damping.] For more
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information about single junction dissipation, we refer the reader to lansiti (1988)

(dissipation due to quasiparticle tunneling), Johnson (1990) (dissipation due to

electromagnetic radiation), and Caldeira and Leggett (1981, 1983) (general formalism for

addressing dissipation).

2.1.2 Single Junction Equation of Motion

As (h/2e)Q and 0 are canonical variables, we can use Hamilton's equations

[5= (2e / h)H/ dQ and Q = -(2e / h)dH / do I to write

2e Q (2.7)
h C

I = -c sinf +1 - Ie (2.8)

where Ic = (2e / h)Ej and Ie (2e / h)dHe / dO (Caldeira and Leggett show that He is

not a function of Q). As QIC = V, the first expression is just a statement of the ac

Josephson relation, Eqn. (2.4). Equation (2.8) is a statement of current conservation: the

bias current I gets divided up into the Josephson channel Icsino, the capacitive channel

Q, and the dissipative channel le.

We can write Eqn. (2.8) as an equation of motion. First, we use Eqn. (2.7) to write Q

in terms of 4. Next, if we treat the dissipation as simply resistive, then we can write Ie as

Ie - V/Re = h4, / 2eRe .1 Finally, multiplying through by 2e/hC gives

d2 +. + SEcEJsin- 4 EJI=0 (2.9)
7+ReCdi he

As previously mentioned, in general the dissipation channel will be far more complex than simply
resistive. For the level of our discussion, however, this approximation is reasonable.
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This is the equation of motion for a driven, damped pendulum; ý represents an inertia

term, 4 / ReC represents a damping term, (8/h 2 )EcEjcog represents a restoring force

term, and -(4Ej/he)Y represents a driving term.

2.1.3 The RCSJ Model

In the RCSJ model, we treat the junction as being shunted by a resistance and a

capacitance. Figure 2-1 shows a schematic drawing of the three channels plus a current

bias source. The Josephson branch, denoted with an "X", carries a supercurrent Is given

by the dc Josephson equation

Is = Ic sin (2.10)

If V (c •) = 0, then Is has a dc component. Also, Is has a dc component in the case of

Shapiro steps, where the voltage is non-zero but oscillatory [Benz (1990)]. However, for

the case where V is a non-zero constant, the supercurrent has an ac component only.

As the supercurrent may be written Is = Ic sin[(2e / 7z)f Vdr], the Josephson channel

has an inductance associated with it. We calculate this inductance by taking the

derivative of the current with respect to time, L =_ V / (dl/ dt). This gives the Josephson

inductance Lj as

Lj = (2.11)
2eI. cos 0

Therefore, the three channels which form the junction behave similarly to an RCL

circuit. Analogous to the oscillations in an RCL circuit, for a time-averaged current

7 < Ic the junction may show small oscillations in 4), called plasma oscillations, about an

average value € = arcsin(7 / I). In the limit of I = 0 and for low damping, these small
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Figure 2-1.

Schematic drawing of a superconducting junction in the RCSJ model.
The Josephson channel, denoted with an "X", is shunted by a resistance Re
and a capacitance C. Shown also is the current source.

oscillations in 0 occur at the plasma frequency cop

COP 18EcE (2.12)

As the three channels are in parallel, the damping of th-se oscillations is inversely

proportional to Re. To quantify the damping, we introduce the McCumber damping

parameter tic [McCumber (1968)]

=- 2e IcR2C (2.13)

(large fic means low damping and vice versa). tic is the square of the quality factor 9 of
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the circuit. For Pc > 1, the plasma oscillations are underdamped, while for 3c < 1,

overdamping occurs. SIS junctions, the ones discussed in this thesis, typically have

underdamped oscillations, while the oscillations for SNS junctions are usually

overdamped.

2.1.4 The Washboard Model

Returning to the Hamiltonian, we write (neglecting He)

2 hH( O,Q) =Qc-Ej cos (0 - •eO(2.14)

2C 2e

As described by Iansiti (1988), we can make the comparison of 0 and Q to the mechanical

variables position and momentum: 0 plays the role of position x; (hl2e)Q plays the role of

momentum p; and (h/2e)2 C acts as a mass M. H(OQ) then resembles

_ 2

H(x,p) 2- + U(x) (2.15)
2 M

where U(x) is a potential energy. In our coordinate system

U(O) =-Ei cos 0- hl 0 2.62e (2.16)
2e

Figure 2-2 shows this potential, called the washboard potential, for different values of

bias current I: the larger I, the stronger the "tilt" of the washboard. We treat this system

as a particle of mass (h/2e)2C sitting in this potential. The particle motion is measured by

the voltage, as ý cc V.

This figure shows four different cases which lead to different segments of the I-V

curves. In (a), a small bias current is applied so that the washboard tilts, though not
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Figure 2-2.

This figure shows the washboard potential, and the corresponding
segments of the junction I-V curve, for four different cases, as described in
the text.
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enough to let the particle escape. • will not have a dc component, so no dc voltage

develops across the junction. As seen in the I-V curve, this is the supercurrent branch

(the small oscillations of the particle in the bottom of the well are the plasma oscillations

already discussed). In (b), as I is increased to 1c, the wells disappear and the particle

escapes, moving down the washboard. • will have a dc component so that we measure a

dc voltage. As our junctions are underdamped, the voltage jumps up to the quasiparticle

branch. In (c), the current has been decreased to where the wells reappear. For

underdamped junctions, the particle "inertia" and the low damping may enable it to

continue down the washboard. The I-V curves will then be hysteretic, as the voltage

remains high for currents below Ic. At the retrapping current It, how(,Ver, the damping

which does exist causes the particle to retrap into a well, and we measure the voltage

dropping back to zero (d). Stewart (1968) and McCumber (1968) give the value of the

theoretical retrapping current as

Jr = ___C (2.17)

2.2 Superconducting Arrays

Having covered the relevant theory for single superconducting junctions, we can now

study arrays of these junctions. Breaking this discussion into four sections, we begin

with the array Hamiltonian in Sec. 2.2.1. In Sec. 2.2.2, we look at the 2D analog of the

washboard potential, the eggcrate potential. Sections 2.2.3 and 2.2.4 present the vortex

equation of motion and collective effects, respectively.
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2.2.1 Array Hamiltonian

In a zero applied magnetic field, the basic Hamiltonian Ho for an array of junctions is

just the sum of the Hamiltonians of the individual junctions,

H X ,[EC(9J -EJ cos(Oi 0)] B=0 (2.18)
04 e

wi:ere the sum (i,j) is over nearest neighbor islands, Oi is the phase of the ih island and

Qij is the charge across the junction connecting the ith and jth islands.I With an applied

magnetic field present, we must add an additional term Tij to the phases

H= Yi 2-EJcos(O~i-Oj-Wij) , B*O (2.19)

(ii

"Y4 hf *d (2.20)

As Eqn. (2.20) shows, 'T{ij is a line integral of the vector potential A along a path from

island i to islandj.

The zero-temperature ground state of this Hamiltonian has been extensively studied

[see Rzchowski, et al. (1990), and references therein]. ForB * 0 the ground state consists

of units of circulating currents called vortices. Figure 2-3 shows the phases Oy which

make up a vortex (the angle of an arrow from vertical gives its phase). In Fig. 1-5, we

showed the currents which correspond to these phases.

1We use B to denote the applied magnetic field, as H is used to denote the Hamiltonian.
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Figure 2-3.

This figure shows the configuration of phases Oi which correspond to a
vortex (Fig. 1-5 shows the corresponding currents). The phases are
represented by the angle of the arrows from vertical (we define vertical as
an arrow pointing towards the top of the page).

Though a vortex is an extended object, it is often useful to determine a position which

corresponds approximately to its center. For a single vortex, we can use the "arctan"

approximation: the phases of the islands 01 are approximately given by

pi = arctan[(Yi - Yo) / (xi -xo)] (2.21)

where (xo, yo) represents the position of the vortex center and (xi, yi) represents the island

coordinates.
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2.2.2 Eggcrate Potential

Rzchowski, et al. (1990), following the work of Lobb, et al. (1983) solved the

potential energy stored in an array for a single vortex as a function of the vortex position.

Figure 2-4 shows this potential energy for a portion of the array. Called an eggcrate

potential, it consists of a lattice of wells commensurate with the array lattice. The well

bottoms are located at the center of the array unit cells (the phase configuration in Fig. 2-

3 represents this low energy position), while the high energy peaks correspond to the

island centers. To cross from one well to another, a vortex must go over a saddle-like

barrier, where the saddle point sits on top of a junction.

The wells are important in describing vortex motion as they act as a regular array of

pinning sites. We define the pinning barrier Eb as the energy difference between the

saddle point and the bottom of the well. Lobb, et al. (1983) numerically calculated this

barrier Eb to be

Eb = 0.199Ej square lattice (2.22a)

Eb - 0. 04 3 Ej triangular lattice (2.22b)

The eggcrate potential is the 2D analog of the washboard potential pictured in Fig. 2-

2. The vortex, similar to the "particle" in the washboard, sits pinned in a well unless

forced out by thej x B force of a strong enough bias current.1 Equivalently, we may

think of the entire eggcrate tilting, with the amount of tilt proportional to the current. We

refer to the current level at which the vortex can first overcome the barrier as the

depinning current Id. From Eqn. (2.22a), Lobb, et al. (1983) give Id to be

IA vortex may also be thermally activated out of a well for non-zero temperatures, or may be forced out by
the nearby presence of other vortices.
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Figure 2-4.

This figure shows the potential energy U(4) of a single vortex as a
function of its position within an array [Rzchowski, et al. (1990)]. This
potential is commonly called the eggcrate potential.

Id - 0.1991C / 2 (2.23)

Unlike the washboard potential, with its one '"particle", the eggcrate potential may be

populated with many vortices. Vortices interact with one another logarithmically

U = /core + 2 7rEj In r (2.24)

where r is the vortex-vortex separation (in units of the lattice spacing), and #core

represents the energy of two vortices with separation r = 1 (core energy). Vortices of like

rotation repel while those of opposite rotation attract. The interplay between pinning and
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the vonex-vortex interaction can lead to interesting effects, such as vortex lattices

commensurate with the array lattice, as discussed in Sec. 2.2.4, and "giant" Shapiro steps,

as described by Benz, et al. (1990) and Sohn, et al. (1991).

2.2.3 Vortex Equation of Motion

Rzchowski, et al. (1990) consider a single vortex in an array with a bias current in the

5direction, so that the vortex feels aj x B force in the i direction. Restricting the vortex

to move only along i, they approximate the vortex equation of motion is

d2 (2irx> I d 2(ý=) 8K =i ) EJI(dHt-- JR--•t-.)h•~~~n - I0 (2.25)
citT\ a IReC dr a J ~ a h~e

where a is the lattice spacing, and K is given by Eb = idEj [ic'--- 0.199 from Eqn. (2.22a)].

For comparison, we rewrite the single junction equation of motion [Eqn. (2.9)]

d2 d0 1d+ 8 EcEJ sin . - 4 EJ I = 0 (2.26)

dtT ReC dt he

Equating (2irx/a) with 4, the two equations are identical to within factors of order 1.

Thus, the motion of a single vortex in an array, and its I-V characteristics, might be

expected to match closely those for a single junction (Fig. 2-2). For example, we expect

vortices to exhibit plasma oscillations, in the bottoms of their wells, at a frequency'

0) - 81cEcEj (2.27)

However, as we will discuss in Coapter 4, vortices are subject to a damping

t Derived from Eqn. (2.25) in the limit of I = 0 and low damping.
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mechanism not present in single junctions: a moving vortex transfers energy to the

junctions over which it travels in the form of a "wake". Thus, a vortex will be more

heavily damped than the similarities of Eqns. (2.25) and (2.26) might suggest.

2.2.4 Commensuration Effects

To this point we have mostly considered single vortices. However, with an applieo

magnetic field we can increase the density of the vortices so that the vortex-vortex

interactions become important. We describe the vortex density in terms of the number of

vortices per unit cellf (also called the frustration)

f = Ba-2 (2.28)

where (Do is the flux quantum

4o = h 2. 0 7 x1 0 - 15 Tesla - m2  (2.29)

For frustrationsf = p/q, where p and q are integers, vortices form lattices

commensurate with the array lattice. Figure 2-5 shows commensurate lattices for (a)f=

1/2 and (b)f= 1/3. Withf= 1/2, called the "fully frustrated" case, the vortices form a

checkerboard-like pattern.

Atf= 1, a vortex filis every unit cell in the array. Except at the array edges, the

circulating currents from neighboring unit cells identically cancel, so that the array

interior forf = 1 resembles that forf = 0. Therefore, features in the I-V curves dependent

onf will show periodicity inf with period Af= 1.
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Figure 2-5.

This figure shows commensurate vortex lattices for (a)f= 1/2 and (b)f
= 1/3. Vortices are represented by the circular arrows.

These commensurate lattices tend to lock vortices into specific positions with respect

to the other vortices of the lattice. Thus, the lattice generally moves together as a unit.

Many features common to lattices, such as shear and defects, also apply to vortex lattices.

2.3 Charging Junctions

We now study the charging limit, where Ec is the dominant energy. As mentioned

briefly at the beginning of this chapter, when describing charging effects it is easier to

discuss normal-insulator-normal (NIN) junctions than SIS junctions. Therefore, in this

section and Sec. 2.4, we only address NIN junctions. As we will see in Chapter 6, this

approach is reasonable as SIS charging arrays show similar behavior to NIN charging

arrays. In that chapter we will discuss the differences as they arise.

Although it is easier in some ways to begin with a single charging junction, its I-

characteristics are strongly dependent on such complex issues as the junction's

electromagnetic environment and the nature and stiffness of the bias source. We will
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instead start with a double junction systm (two ::ons in series), as it -V

characteristics are not as sensitive to these factors. -;tso, a double junction may be

thought of as a single island coupled through junctions to two leads. By studying this

system, we are already looking ahead towards arrays, where the dynamics are described

by the charging of islands.

We break this section into two parts. Section 2.3.1 discusses the double junction

Hamiltonian and Sec. 2.3.2 derives its I-V characteristics.

2.3.1 Double Junction Hamiltonian

In the normal state, Ej = 0 so that the single junction Hamiltonian Ho (which here

equals the capacitive energy Esingle) becomes

2
Ho = Esingle = 2C (2.30)

The energy stored in a double junction, a schematic drawing of which is given in Fig. 2-6,

requires only a few modifications. First, we redefine Q as the charge difference, from

neutral, on the island. Specifically, Q = en + Q0, where n - total number of electrons on

island minus the total number of protons. Q0 represents the charge "fed" into the island

by a gate capacitor, Qo = CgVg (see Fig. 2-6), plus any other charges induced by stray

electric fields. We also replace C in Eqn. (2.30) by the sum of the capacitances C, =- 2C

+ Cg.1 The capacitive energy for a double junction Edouble then is

(en + Q,) 2
Edouble = 2C7 + V=0 (2.31)

We have taken the capacitances of the two junctions to be equal. If the junctions, labeled 1 and 2, have
different capacitances, then C; =-- C I + C2 + C9
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Figure 2-6.

A schematic drawing of a double junction system. A voltage Vg is
applied through the gate capacitor to the island formed by the two
junctions.

As noted, Eqn. (2.31) is valid for the zero-bias voltage case only. For non-zero biases the

capacitive energy term is given by

Edoble(en + Q°) C1C2V2

E =double + C- (2.32)2cI 2C,

We will use these energies to determine the system I-V characteristics.

2.3.2 Double Junction I-V Curves

According to the "orthodox" theory of these junctions [Averin and Likharev (1991)

and Hanna (1992)], the I-V curves may be calculated analytically using a Hamiltonian

given by Ho and terms which include probabilistic tunneling elements. However, we can

motivate the more basic I-V features using the artifice of energy level diagrams. Figure

2-7 shows the energy levels of the two electrodes and the island for Q0 = 0 and a small
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bias voltage V. All states below the Fermi energy are filled and all states above it are

empty. As Q0 = 0, the Fermi level of the island sits at eV/22 An electron attempting to

tunnel onto the island (n = 0 -- n = 1) will raise the Fermi level by the capacitive

charging energy given in Eqn. (2.32), e2/2C., As Fig. 2-7 shows, for bias voltages below

some threshold V1 this transition is energetically forbidden. Therefore, no current may

pass through the system. This corresponds to t., Coulomb blockade region. However,

for large enough bias voltages, as seen in Fig. 2-8, the transition n = 0 -- n = 1 becomres

allowed and electrons may tunnel through the two junctions, giving rise to a current.

Figure 2-9 shows an I-V curve for the Qo = 0 case including this Coulomb blockade

region.

For completeness, we need to define two voltage levels, the threshold voltage V1 and

the offset voltage Voff. V1 is the voltage level where current first begins to flow. For Q0 =

0, as current will flow for eV/2 > e2/2Cy, V1 = e/Cy. Voff is the voltage where the

asymptote, to which the I-V curve approaches at large voltages, extrapolates back to I =

0, i.e., voltage axis. As Fig. 2-9 shows, for C1 = C2 and Q0 = 0 the threshold and offset

voltages match, and have the value

V eff = e (2.33)

In general, following the work of Averin and Likharev (1991), Eqn. (2.33) is true for all

values of Q0. However, as the next case will show, V, depends strongly on Q0.

If Q0 * 0, we get different I-V characteristics. For example, we will look at the case

where Qo = -e/2. For V = 0 and n = 0, Eqn. (2.31) gives the system energy as Edoubtle

e2I8Cy, If we tunnel an electron onto the island, i.e., n = 0 -4 n = 1, Eqn. (2.31) again

gives the system energy as Edouble = e2/8CE Therefore, as it costs no energy for

1This is true only for the symmetric junction case; C1 = C2 = C.
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Figure 2-7.

Energy level diagram of the two junction system for Q.0 = 0 and V < V,.
The transition of an electron from the left electrode to the island is
energetically forbidden, so that no current may flow. This corresponds to
the Coulomb blockade region.

eV

Figure 2-8.

Energy level diagram for a two junction system with Go 0 and V> V1.
For this case, it is energetically allowed for an electron to tunnel onto the
center island, so that current flows.
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Q=

e/Cz Qo= e/2

I

Figure 2-9.

Schematic I-V curves for the two junction system for different values
of Q0. For Q0 = 0, we see the Coulomb blockade region of zero
conductance. However, for Q0 = -e/2, current flows for all non-zero
voltages. These curves are for the symmetric junction case, Cj = C2. For
asymmetric junctions, steps in the I-V curves are measured, resulting in
the so-called Coulomb staircase.

electrons to tunnel ,.nto or off of the island (n = 0 -- n = 1 or vice versa), current may

flow for arbitrairly small bias voltages. Vt = 0 in this case.

Figure 2-9 shows the I-V curve for this Qo = -e/2 case. As Vt = 0, there is no Coulomb

blockade region. Not given by the simple formalism, however, is that the curve for Q0 =

-e/2 asymptotically approaches the Q0 = 0 curve. This is true for all values of Q0 .
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2.4 Charging Arrays

We conclude this theoretical overview with a discussion of charging arrays. In Sec.

2.4.1 we describe the capacitive energy for the array Earray. Section 2.4.2 introduces

solitons and Sec. 2.4.3 discusses the array I-V characteristics and possible commensurate

effects.

2.4.1 Capacitive Energy of a 2D Array

The total capacitive energy of an array is simply the sum of the energies for each

capacitor, CV2/2

Earray ((vi-Vj)2 c/2 + X(vj-Vo) 2Co/2 (2.34)
0i1j)i

where the sum (i,j) is over nearest neighbor pairs, Co is the capacitance between an

island and the underlying ground plane (the ground plane serves as the gate electrode for

these arrays), and Vo is the ground plane voltage. Vi represents the voltage level on the ith

island, and can be related to the island charge Qi by

X,C(Vi-vj) + Co(V i -vo)=Qi (2.35)
(U)

where the sum (j) is taken over the four nearest neighbor islands to island i. We can also

write this in matrix form

Q=CV (2.36)

where Q and V are vectors whose elements Qi and Vi correspond to the itb island, and
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is a tensor whose elements Cij give the capacitance between the ith and A'h island

(Cii =- Co). C can also include elements corresponding to "stray" capacitances between

non-nearest neighbor islands.

Often, we wish to calculate the energy Earray for a given charge configuration Q. To

perform this, we rewrite Eqn. (2.36) as

- =-I1
V=C- (2.37)

and use the voltages V in Eqn. (2.34) to determine Earray. One drawback to this method

is that it involves inverting C, which for an N by M array is an NM by NM tensor.

Therefore, for all but the simplest charge configurations, this problem must be solved

numerically.

2.4.2 Solitons

For the case of a single charge (electron or hole) placed into an otherwise neutral

array, Bakhvalov, et al. (1991) showed that the resulting voltages V may be determined

analytically. For an electron or hole on island io, the surrounding voltages form a near

axial-symmetric distribution1

1eIn for l << r <<
2,rC r

Vi ±e e' CCr for r >> (2.38)

where r is the radial distance away from island io (in units of the array lattice spacing),

1The symmetry is distorted near islands io due to the array discreteness.
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and Ao1 is a characteristic distance given by

o n + 2 - Co I CZ (2.39)

For Co << C, Eqn. (2.39) reduces to Ao - •o IC. Figure 2-10 shows this potential,

which graphically represents a soliton.

Unlike vortices, solitons do not have to overcome barriers to pass from island to island

(sufficiently far away from the array edges), as the following argument shows. With

vortices, the high energy position occurs when the vortex sits on top of a junction, i.e., the

saddle-point between two pinning wells. The phase difference across the junction is 7r,

leading to the maximum junction energy of -Ej cos OJ2r = Ep. The vortex does not like

to sit in this position due to this large energy (this simple argument neglects the energies

of all of the other junctions, which must be taken into account in more rigorously

addressing this question). With solitons we follow the same line of reasoning, though

reach a different conclusion. If an energy barrier for solitons to move from island to

island exists, it would occur where the soliton was "halfway between" the two islands.

We can think of this in-between case as both islands sharing the soliton, i.e., each having

a charge of e/2. The charge on the junction between the two islands for this case is zero,

resulting in zero energy. Therefore the soliton would like to sit in this position if

possible, as it represents a lower energy than if it sat on one island alone (again, one must

calculate the energies of all the junctions to prove this rigorously). Therefore, though

solitons cannot take advantage of this position due to charge quantization, it represents a

low energy configuration and does not act as a barrier.

Mooij, et al. (1990) predict that solitons interact logarithmically with the interaction

potential U given by
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V

Figure 2-10.

Configuration of voltage levels as a function of position for a single
charge placed on an island in an otherwise neutral array [Bakhvalov, et al.
(1991)]. We refer to the charge and the surrounding "dressing" as a
soliton. For this figure, Bakhvalov, et al. choose ColC = 0. 1.

U =.pcore +(Ec /7)lnr r << « o1 (2.40)

where j-core represents the energy of two solitons one lattice spacing apart (core energy).

For r >> A-1, U falls of exponentially. Like vortices, solitons of similar charge repel

while those of opposite charge attract. The logarithmic form is derived with the

approximation that the system is two-dimensional, as if the solitons were line charges.

However, if we allow that in the actual arrays fringing fields will make the system quasi-

three dimensional, it is uncertain what form the potential U will take. D. S. Fisher

(private communication) argues that the interaction will not be logarithmic, but short

range in nature.
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In a rectangular array, the electrostatic energy of a soliton is lowered by proximity to

an edge electrode and raised by proximity to a free edge. In analogy to the Bean-

Livingston surface barrier for vortices in type II superconductors [Bean and Livingston

(1964)], Bakhvalov, et al. discuss this in terms of image charges: at an edge electrode a

soliton is mirrored by an antisoliton to which it feels an attraction; at free edges a soliton

is mirrored by a soliton of like charge and hence repulsion occurs.

2.4.3 I-V Characteristics and Commensuration Effects

Similar to the double junction system, these arrays show a Coulomb blockade region

in which no current flows [see Fig. 1-4(b)]. For arrays, the blockade occurs because at

low bias voltages, solitons cannot overcome their attraction to the edge electrodes and

move through the array to contribute to a current. Above some threshold voltage V1,

however, the force due to the voltage bias is strong enough to separate the solitons from

their image charges and pull them through the array. The I-V curve then approaches an

asymptote which, like the case of the double junction, extrapolates back to a finite offset

voltage Voff. We discuss the nature and theoretical estimations of VOff and Vt in more

detail in Chapter 6.

Bakhvalov, et al. (1991) predict that it is possible to induce solitons to sit in an array

by applying an external electric field (generated by applying a voltage Vg between the

array and the ground plane). The density of these field-induced solitons is proportional to

the strength of the electric field. As with vortices, these solitons move to form lattices

which minimize the repulsive energy. At certain densities, they are predicted to form a

lattice commensurate with the array lattice. For example, we might imagine a '"f= 1/2"

state [see Fig. 2-5(a)] in which solitons occupy every other island in a checkerboard-like

pattern. These lattices have not yet been observed, either numerically or experimentally.

This may be due to the array sizes being too small so far, so that the soliton interaction

with the array edges interferes with the formation of a commensurate lattice.
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CHAPTER THREE

DESCRIPTION OF EXPERIMENT

This chapter describes the design, fabrication, and measurement of arrays. Section 3.1

discusses the array design, made unintuitive by the constraints of shadow evaporation.

Section 3.2 describes the array fabrication, including photolithography, electron beam

lithography, development and evaporation steps. Sections 3.3 and 3.4 detail the set-up for

the electrical measurements and refrigeration, respectively. Included in Sec. 3.3 is a

description of the method of feeding microwaves to the sample at cryogenic temperatures.

We study ten samples, the first six made with Sn-SnOx junctions, and #7 through #10

made with Al-AlOx junctions. Though the tin and aluminum arrays have the same general

design, and are made with the same general procedures, many specific details are different.

We will describe differences as they arise, but will place more emphasis on the aluminum

arrays as (1) they are closer to representing the current "state of the art" and (2) much

pertinent information on making tin junctions may be found in lansiti (1988). Specific

information on the ten samples may be found in Table 4-1 (samples #1 - #5), Table 5-1 (#6

and #7), and Table 6-1 (#7 - #10).

3.1 Array Design

The arrays discussed here all consist of a 2D lattice of islands, with each island

connected to its nearest neighbor through a Josephson junction. The arrays have a square

unit cell: every island, not at an edge, has four nearest neighbors. The majority of the

arrays we measure have 50 by 70 unit cells. Two opposite sides of the array are connected
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to bus bars, each connected to every island on its side through a lead. Each bus bar is then

connected to a pair of pads, one for current injection and the other for voltage measurement

(see Fig. 3-3). In the superconducting state, the bus bars have zero resistance so that this

configuration results in "four probe" mea.,urements. In the normal state, the bus bars will

have a non-zero resistance so that the lead configuration results in "two probe"

measurements. However, the sample differential resistances in the normal state are all

greater than or equal to Rn, typically on the order of tens of kf2s for our samples. As the

longest and thinnest bus bar we use for the normal state measurments has an estimated

resistance of 20 Q at room temperature, we expect that these small resistances will not

noticeably affect our results.

The method of fabricating the junctions using a shadow evaporation technique puts

certain constraints on array design. We are restricted to having junctions along one

direction; the horizontal direction, for example, if one looks straight down on the pattern.

We can still achieve a square unit cell, though we have to use the brick-like pattern shown

in Fig. 3-1(a).' As Figs. 3-1(b) and 3-1(c) show, this pattern does reduce to a square unit

cell. Also indicated in Fig. 3-1(c), the principal axes of the array lie at non-horizontal and

vertical anglcs. Thus, to achieve a 4 by 7 array which resembles that in Fig. 3-1(d), we

must use a pattern like that in Fig. 3-1 (f) [Figure 3-1 (e) shows schematically the translation

between the two]. The majority of arrays we measure have 50 rows by 70 columns, with

bus bar arrangements as in Fig. 3-1(d). The current direction is along the rows, so that the

current must pass through a minimum of 70 junctions. (We fabricated samples #3 and #5

before we fully understood the diagonal nature of this design and how to compensate for it.

We refer to these 10 by 10 arrays as "diamond" arrays. Appendix A gives schematic

drawings of their design.)

At the edges of the array, we find it important to add extra structures. In electron beam

lithography the majority o. the electron beam exposes only the points on which it is

t While the aluminum arrays have a design which permits both horizontal and vertical lines, similar
constraints exist that restrict us to use essentially the same brick-like pattern.
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Figure 3-2.

This figure shows how the pattern used for the tin arrays transforms into that used
for the aluminum arrays. Electronically, the two patterns are equivalent.

focused. However, a small fraction of the beam, and electrons which have been back-

scattered from the resist or substrate, expose the surrounding areas as well. This cross-

exposure means that two lines exposed one micron apart will each receive a higher

exposure than two lines exposed ten microns apart. Therefore, to assure that the outside

edges of the array receive roughly the same amount of cross-exposure as those inside the

array, we add two extra rows per side of the array. These rows mimic the array pattern,

but are designed not to change the array's electrical configuration.

For the aluminum arrays, we use a slightly different unit cell. Seen in Fig. 3-2, we.

change two lines to get junctions formed with perpendicular lines. We will discuss the

reasons for this change below. Going to this new configuration does not appreciably

change the geometry of the array.

Figures 3-3, 3-4, and 3-5 show pictures of the tin and aluminum arrays. In Fig. 3-3,

we see two arrays of size 50 by 70 unit cells, and the leads connecting the array to the

pads-(a) shows a tin array and (b) shows one made from gold, which simulates the size

and dimensions of the aluminum arrays. The substantially smaller size of the aluminum

array reflects advances in our equipment and methods. In Fig. 3-4 we see the unit cells for

the tin and gold (aluminum) arrays, and in Fig. 3-5 we see the individual junctions. The
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(a)

- 100 gm
(b)

Figure 3-3 -10 Jm

Scanning electron microscope (SEM) micrographs showing pictures of (a) sample #4, a
50 by 70 tin array and (b) an array made out of gold with the same size and dimensions of
samples #7-#10, 50 by 70 aluminum arrays (aluminum does not show up well in the
SEM). Note the difference in physical dimensions of the two arrays: the bar (vertical) in
(a) is 100 lim long, while the bar (horizontal) in (b) is 10 jim long.
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(a) n_10_m

1001nm

Figure 3-4

This figure shows pictures of (a) the unit cells for sample #1, a tin array and (b) an
island in the gold array (which simulates the aluminum arrays, samples #7-#10). In (a),
the vertical bar is 10 ýtm in length, while for (b), the bar is horizontal bar is 0.1 Im in
length.
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(a)

5ý1pm

100 nm

Figure 3-5

This figure shows pictures of individual junctions in (a) sample #1, a tin array and (b)
the gold sample (which simulates the aluminum samples #74#10). To the side of the
pictures, the vertical bar in (a) is 1 ptm long and the horizontal bar in (b) is 0. 1 ptrn long.
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gold (aluminum) junction in Fig. 3-5(b) is roughly 30 times smaller in area than the tin

junction in Fig. 3-5(a).

3.2 Fabrication

At a basic level, fabricating arrays of small Josephson junctions is a simple extension of

fabricating single small Josephson junctions, first pioneered at Bell Labs [see for example

Dolan (1977), Dolan, et al. (1981), and Hu, Jackel, and Howard (198 1)], and used in this

group by lansiti (1988) and Johnson (1990). These works serve as useful sources of

information, much of which we will only summarize here. However, fabricating an array

does present a host of specific problems, many derived from (1) problems associated with

the size of the array and (2) cross-exposure, described above.

3.2.1 Photolithography

We use 2" diameter oxidized silicon wafers for our substrates. The wafers measure

about 250 gtm thick with an oxide cap of approximately 1000 A. The doping of the silicon

is unspecified, but should not contribute to the conduction due to both the oxide layer and

the low temperatures used (the carriers from the dopants should freeze out at dilution

refrigerator temperatures).

We clean the wafers before patterning the contact pads and again before patterning the

array. The cleaning method consists of boiling the substrates in photoresist stripper for 5

minutes, followed with an ultrasound bath for 10 minutes. This is then repeated four more

times using first soap and water, then trichloroethylene, acetone, and finally methanol. A

full description of this process may be found in Smith (1989).

We pattern the electrical contact pads with a three layer, photoresist-aluminum-

photoresist technique described by Danchi (1982) or with a photoresist layer soaked in

chlorobenzene described by Jansiti (1988). As these two theses go into the techniques in
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"1/4"

fabricated shorting wires

Figure 3-6.

This figure shows the pad layout ased for many of the samples, with
V± and 1± representing typical configurations for the voltage and current
leads. The small inclined rectangle in -ne center of the pads represents the
array. The fabricated shorting wires are "cut" by scratching through them
with a diamond-tipped scribe. We do ths after the sample is mounted on
the dilution refrigerator slug.

detail, we will not discuss them here. For the contact pads we deposit 200 - 500 A of gold

on top of 10 - 20 A of chrome, the chrome providing the gold good adhesion to the

substrate. We use the thinner pads for the aluminum arrays, where the total thickness of

the aluminum layers is approximately 500 A. In Fig. 3-6 we see the layout of the contact

pads. Each pad set measures 1/4" on a side, so that 30 to 40 pad sets can be diced from

one wafer.

Dust poses a large problem to the patterning of these arrays. The largest source of dust
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comes from the wafer itself: scribing and cleaving a wafer into the individual pad sets

generates silicon particulates. We have found that no amount of cleaning can then remove

these particles. To remedy this problem we coat the wafer with a layer of photoresist

before scribing it. The silicon dust then lands on the photoresist layer and is removed as

the photoresist is removed when the individual pad sets go through the cleaning process

mentioned above. This process increases the yield of dust-free pad sets to almost 100%.

3.2.2 Electron-beam Lithography

Electron-beam (e-beam) lithography works by exposing a layer of material, called resist,

with an electron beam. The resist is sensitive to high-energy electrons; when exposed, the

molecules which make up the resist break down and become soluble in a developer. By

controlling the beam, we can use it, like a sharpened pencil, to write any pattern.

We use a bilayer technique in fabricating the array. The bottom layer consists of PMMA

(polymethylmethacrylate) mixed with MAA (methacrylic acid), while the top layer consists

of PMMA alone. The PMMA/MAA mixture is more sensitive to electrons, thus helping to

provide the wide undercut needed to use the shadow evaporation technique. In Fig. 3-7(a)

we see a view of the electron beam exposing the bilayer. The electron beam widens as it

reaches the bottom layer due to scattering. In addition, the bottom layer receives a higher

dosage of electrons as they also backscatter from the substrate. We make backscattering

more prominent by choosing a relatively low accelerating beam voltage, between 12 and 20

keV. The combination of being exposed to a more spread-out beam, being exposed to

backscattered electrons, and the higher sensitivity of the PMMA/MAA mixture leads to a

large undercut, as seen in Fig. 3-7(b).

In choosing the thickness of the bottom resist layer we adhere to the general rule of

thumb that it should be at least three times as thick as the total thickness of the metal

deposited. This prevents tearing during liftoff. The top resist layer must be thick enough

so that it does not sag in the regions of undercut [the overhang as seen in Fig. 3-7(b)]. The
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lower limit of the sample thickness is determined by the amount of metal we must deposit

to form a continuous path. For aluminum we use layers as thin as 200 A, which we find to

be continuous. With tin, however, we require thicker layers; 1000 A or more. Also, with

the shadow evaporation technique described in the next section, in separate evaporations

we deposit overlapping wires. We make the second layer of the evaporation roughly twice

as thick as the first layer to be sure that, evaporated at a high angle, it does not have any

breaks due to the shadow:, ý. of edges of the first layer. Table 3-1 shows all of the relevant

information concerning the e-beam resist layers for both the tin and aluminum samples, as

well as the thicknesses of metallic layers.

To create ultrasmall junctions, we use a special technique called shadow evaporation. In

this method we use two evaporations at different angles to create an overlap: the junction

region. For this to work correctly, we need to create a suspended "bridge" of resist. In

Fig. 3-8(a) we see how to create a bridge of resist by bringing the end of one line close to

another, perpendicular line, or by bringing the ends of two lines close together [Fig. 3-

8(b)]. With the resist system designed to give a large undercut, one needs only to bring the

lines together to within 1 gIm for the tin arrays and 0.15 p.tm for the aluminum arrays to get

a resist bridge (for the aluminum arrays we need a much smaller gap due to the thinner

bottom resist layer).

We use a 3 to 1 mixture of isopropanol and MIBK (methylisobutylketone) as a

developer. This can be bought commercially as PMMA Rinse (KTI Chemicals;

Wallingford, CT). If mixing by hand, one must be alert that MIBK is sold under different

names, such as 4-Methyl-2-Pentanone (Aldrich; Milwaukee, WI). For the tin and

aluminum arrays we develop for 10 and 5 minutes respectively. After developing, we use

pure isopropanol as a stop bath.
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Figure 3-7.

Side view of resist system (a) being exposed by an electron beam and (b) after
development.

(b)
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Bridge
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Resist Undercut: resist present at top Silicon

Figure 3-8. but open at wafer level. Wafer

Top view of resist showing method of creating resist bridge with (a)
perpendicular lines and (b) parallel lines.
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3.2.3 Evaporation

We use this resist bridge, along with an angle evaporation, to fabricate small junctions.

Here, we will discuss only the procedure used in making the junctions formed with

perpendicular lines (used in the aluminum arrays) The procedure for the parallel lines (tin

arrays) is similar, except as noted.

As seen in Fig. 3-9(a), we perform the first evaporation straight down.I We typically

use a rate of 10 A/second for aluminum and deposit 200 A for the first layer.2 We then

oxidize the aluminum (this oxide forms the insulating layer of the junction) by letting in a

small amount of oxygen gas into the chamber. We typically allow the sample to see 50

mtorr of oxygen gas for 3 to 10 minutes. For the tin arrays we find it necessary to use an

oxygen dc plasma for oxidation. The junction normal state resistance R. increases with the

oxidation time. We then change the angle of the sample and perform the second

evaporation. We change the angle of the rotating stage on whic:, the sample sits by means

of a speedometer cable fed into the chamber through a rotary feedthrough. For the

aluminum arrays, we change the angle to 450. With the second evaporation, we put down

a layer of 400 A at a similar rate.3 As Fig. 3-9(b) shows, this creates just a small area of

overlap: the junction region.

After evaporation, we use acetone as the solvent for liftoff. Frequently we need to place

the arrays in an ultrasonic bath to get all of the excess metal off. Using ultrasound does not

appear to damage the junctions in any way.

For the aluminum arrays we go to forming junctions with perpendicular lines for

considerations of junction uniformity. As seen in Fig. 3-5(a), the ends of lines are

rounded. As each end, and hence each overlap, is slightly different this leads to different

1For the tin arrays, we cool the sample stage to 77 K during evaporation. For the aluminum arrays.
however, the stage is kept at room temperature.
2For tin we use a rate of roughly 100 A/sec.
3The nominal thickness is equal to the thickness deposited [as measured by a digital thickness monitor
(DTM)] times the cosine of the angle between the normal of the substrate and the line of sight between the
sample and the crucible. Therefore, at an angle of 450 we must deposit roughly 600A of metal as measured
by the DTM to get a nominal thickness of 400A.
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Figure 3-9.

We form a junction with two evaporations. Using the pattern in Figure 3-8(a), in drawing
(a) we evaporate straight down then oxidize (oxidation step not shown). We perform a
second evaporation (b) at an angle of about 45 degrees, forming an overlap. In a correctly
designed circuit, the line to the far left in (b) will not short out any circuit elements.
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junction areas within an array. However, the width of the lines is fairly constant away

from the ends. To achieve more uniform areas we can lay one line across another to from a

cross. However, this leads to larger junctions as the linewidth away from the ends is as

much as 50% larger than that right near the end. As a compromise to achieve the maximum

junction uniformity without sacrificing too much in junction size, we form the junctions by

crossing lines, but not crossing them entirely [shown in Fig. 3-9(b)].

3.3 Measurement

With these arrays we perform transport measurements. In the following two sections

we describe first, the circuitry used for the dc characterization of the array and second, the

inclusion of microwave irradiation.

3.3.1 DC Set-Up

To connect the array, through the contact pads, to the current and voltage leads we use

an indium "sandwich" technique. First, an indium dot (thin slice of indium wire) is placed

on a pad. After laying the sample wire on the dot, another dot is added on top and pressed

down with the blunt end of a small Allen wrench (or similar tool), forming a sandwich.

This technique works well as long as vacuum grease and similar substances which hinder

adhesion are kept off of the contact pads.

We then mount the sample so that any applied magnetic field is normal to the array. On

the slug used for the dilution refrigerator, we place the sample as seen in Fig. 3-10. We

feed the leads through 1 to 5 kQ resistors. These resistors help in preventing voltage

spikes, which occur during the top-loading procedure, from damaging the sample. They

may form a low-pass filter with the lead capacitance, thereby reducing the noise which

reaches the sample.

For samples #6 and after, we employed microwave filters in the dilution refrigerator to
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Screw: seats into tail-piece
of dilution refrigerator

Eight rings through which
electrical contact to sample

P is made.

1 ....... "--- Heat sinking spool

5 kf2 resistors

Magnetic
Field
Direction

Sample: lines connect to 4
pads with indium dots.

Place where screw on
top-loading stick seats.
Note the left-handed
thread.

Figure 3-10.

Schematic drawing of the dilution refrigerator slug. The sample sits on the flush
end of the sample area so that the magnetic field is perpendicular to the plane of the array.
Each ring at the top is electrically connected to a lead (only four are in use here). These
rings mate to counterparts in the refrigerator tail when the slug is top-loaded (see Fig. 3-13).
When mounted in the refrigerator the slug sits upside-down from the position shown.
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prevent microwave noise from getting down the leads and affecting the measurements.

First employed by Martinis, et al., (1987) these microwave filters consist of a container

filled with fine copper powder mounted' onto the mixing chamber. We iun the sample leads

through this copper powder. The copper particles appear to be insulated from one another

by naturally grown oxide layers. This presents a large effective surface area, and the

microwave noise is adsorbed through skin-eff -ct damping. In benchtop experiments, we

measure these filters to attenuate ac signals by more than 40 dB from 100 MHz to I GHz,

and more than 50 dB above 1 GHz.

The container we use is a cylinder one inch in diameter and about two inches high. The

bottom cap has a screw mounted on it so that the whole assembly can be screwed onto the

mixing chamber. Seven of the eight sample leads run through the filter. Lead #7 does not,

as after the whole assembly had been mounted, we discovered that it shorted out to the

dilution refrigerator body somewhere in the filter. In our experiments, we do not use #7.

For each of the other leads, about two feet of wire is coiled up inside the container.

One drawback with our filter design is that at milliKelvin temperatures, if the intergrain

thermal contact is poor, the copper grains may be inadequately heat sunk to the mixing

chamber. This would limit the filter's effectiveness as it only adsorbs radiation down to its

blackbody temperature. Martinis, et al. have attempted to solve this problem by mixing the

copper grains with a low-temperature epoxy (Stycast 2850; Schall, Burlington, MA), using

it as a matrix material. Though this increases the grain heat sinking, it also decreases the

number of grains per unit volume, thus decreasing the effective surface area needed for

microwave dissipation. To our knowledge, no systematic tests have been performed on

these filters or their designs.

On employing a current-biased circuit, we use no other filtering. However, when using

a voltage-biased set up we find the curves often to be sharply rounded. Using ERIE filters

at the ttp of the fridge on both the current and voltage leads sharpens up the curves, though

never as much as with the current biased circuit. We therefore stick to the current-biased
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set-up as much as possible. Figure 3-1 1(a) shows the current bias set-up employed,

including placement of the microwave filters, and Fig. 3-11 (b) shows a voltage bias set-up.

Figure 3-12 shows a schematic diagram of a ramping current/voltage source designed

by M. Tuominen. The source's basic features are controlled by four pots: the pot marked

"t'is used to control the sweep rate; that marked "range" is used to control the maximum

output of the source; that marked "RL" is the limiting resistor (RL = 0 gives a voltage bias

while RL = 1 GO gives a current bias, for most applications); and that marked "Rm" is

used as the measuring resistor across which the current is determined in current bias mode.

When set to "hold", the source sits at a particular current or voltage. However, due to non-

ideal op-amps, the current or voltage will drift. Therefore, this circuit is not appropriate for

uses which require a fixed current or voltage.

3.3.2 Microwave Set-Up

For the experiments looking for SET oscillations, we wish to irradiate the samples with

microwaves up to 20 GHz. Delsing, et al. (1989b) performed a similar experiment where

they irradiated one dimensional arrays with microwaves. In a large part we duplicate their

methods. We run the microwaves from the top of the cryostat to the sample using stainless

steel coax. While somewhat lossy (the 0.081" diameter coax is rated at about 3 dB/foot at

room temperature), the low thermal conductivity of the stainless steel prevents a large heat

leak. We find it necessary to insert a fixed attenuator (Narda; Hauppauge, NY):1 without

it we find significant heating of the sample by either blackbody radiation getting down the

coax or simple thermal conduction through the inner conductor, which is not directly heat

sunk at any point. The fixed attenuator absorbs a significant fraction of the blackbody

radiation, and appears to allcw for a good heat-sinking path to the inner conductor. On the

helium-3 refrigerator, we use one 20 dB attenuator thermally anchored to the He-4 pot. On

1We use DC 18 GHz fixed attenuators with SMA-type connectors. Though only rated to -550 C, we have
used them at milli-Kelvin temperatures and have thermally cycled them over ten times without noticible
degredation of their performance.
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The circuit used for (a) current biased and (b) voltage biased measurements.
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the dilution refrigerator, we use two attenuators; a 15 dB attenuator thermally anchored to

the He-4 pot and another 10 dB one anchored to the mixing chamber. In addition, we

thermally anchor the outer conductor to different stages to assist in heat-sinking.

We couple the microwaves to the sample by attaching them, through blocking

capacitors, directly to the leads going across the sample. Delsing, et al. tried several

different coupling schemes, including radiative coupling using a three turn coil, and report

this one to work the best. The blocking capacitors are necessary as without them, the

sample leads would short though a resistance of roughly 50 Q in the fixed attenuator. We

use 100 pF mica capacitors.

Using microwaves in the dilution refrigerator does not allow for top loading; the

microwaves would dissipate getting through the wiring on the slug. Therefore, we mount

the sample on the outside of the refrigerator tail-piece, as seen in Fig. 3-13. In this

position, we can still apply a magnetic field of up to 7 Tesla, while injecting the

microwaves in the same fashion as we do in the helium-3 refrigerator. One important

feature is that we use the same DC leads as in the other, non-microwave experiments. We

top load a slug packed with three inches of sample wire, pull the wire out through a slot in

the tail, and connect it to the sample.

3.4 Refrigeration

We perform the majority of measurements in an Oxford Instruments Model 200 dilution

refrigerator, with top-loading option. The dilution refrigerator has a base temperature of 13

mK and is equipped with a 7 Tesla magnet. The top-loading option limits the number of

sample leads to 8. However, for experiments which do not use this option (for example,

the microwave experiment described in the last section), more leads can easily be added (16

are presently available). A semi-rigid coaxial cable for carrying microwave signals also

exists, as described in the last section. The refrigerator also has many other features, such
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Figure 3-13.

This figure shows the mounting set-up for the microwave experiment in the dilution
refrigerator. The sample sits outside the refrigerator tail, but is still connected to the slug
leads through wires pulled out through a slot i.n tho, tail (we only show two leads here).
The microwaves are fed into the sample by attaching its center and outer conductors to
opposite sides of the sample. For a more detailed description of the slug, see Fig. 3-10.
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as a rotary feed-through and gas feed-throughs, which are all currently unused.

We principally rely on two thermometers, both mounted on the mixing chamber, to

determine temperature; a germanium-resistance-thermometer (GRT) and a ruthenium-oxide

(RuOx) thick film thermometer. The GRT (Lake Shore Cryotronics, Westerville, OH)

works well for temperatures of 300 mK to 6 K and is calibrated by the manufacturer.

Though rated for temperatures down to 50 inK, its readings are not as accurate in this

temperature range as the readings of the RuOx thermometer. The RuOx thermometer also

has the advantage of having a small magneto-resistance, so that for a given temperature its

readings do not change much with an applied magnetic field [Li, et al. (1986)]. However,

the RuOx thermometer has to be calibrated for every cool-down. For this purpose we use

five slugs of superconductors with calibrated transition temperatures (purchased from the

National Bureau of Standards).' With each slug we coil wire around it to form an

inductor, the inductance of which we measure by ac lock-in techniques. As the inductance

depends on whether the slug is in the superconducting or normal state, we can use the lock-

in signal to sit on the transition (specifically, we use the lock-in output as the "error" signal

into the temperature controller). The known transition temperature of each slug allows us

to calibrate the resistors.

We also use an RMC Cryosystems helium-3 refrigerator and several simple pumped

liquid helium systems. The helium-3 refrigerator can reach 300 mK and is designed to fit

into a magnet system (Cyromagnetics, Inc.) with a maximum field of 5 Tesla. Cooling

comes from pumping on a bath of liquid helium-3 with an activated charcoal pump. Unlike

the dilution refrigerator which can operate continuously, periodically the charcoal must be

heated, driving off the helium-3 so that it can recondense in the bath. Typically, we have

found the need to "regenerate" every 6-8 hours. For thermometry we use a calibrated

GRT, similar to the one used in the dilution refrigerator.

We discuss sample self-heating, as it may prevent the sample temperature from reaching

1The transition temperatures of the five slugs are roughly 15, 23, 101, 161, and 207 mK.
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these low milli-Kelvin temperatures. Heat generated by the Josephson junctions may

dissipate through two mechanisms: through the on-chip leads and through the substrate.1

Iansiti (1988), and more extensively, Smith (1989) give calculations for heat dissipation

both by conduction through the on-chip leads, and by the substrate. By simple arguments

Iansiti showed that for his single junctions at 30 mK, the on-chip leads should be ten times

as effective as the substrate for carrying away heat in the form of phonons (as the material

is superconducting, electronic heat conduction is greatly reduced). For arrays, however,

heat conduction through the on-chip leads is hampered by the presence of multiple

junctions: the junction's insulating layer acts as a barrier to phonons as well as to

electrons. Heat generated in the center of the array must pass through a minimum of 35

junctions before reaching the on-chip leads. In addition, with our array design we have a

much larger area closer to the junctions than did Iansiti, i.e. the rectangles seen in Fig. 3-

1 (a). Therefore, heat-sinking through the substrate should be important, and we consider it

here.

We quantify the discussion of self-heating by introducing AT = Tsample - Trefrigerator.

For a given input power P, we have

AT = RKP I. 1)

where RK is called the Kapitsa resistance. The Kapitsa resistance is given in Louanasmaa

(1974) to be

RK =(3.2)

where A is the interface area and icis a constant and depends on the two materials.

Richardson and Smith (1988) give a typical value for icfrom a metallic to a dielectric as 30

I The substrate is heat sunk by the large contact pads, in turn heat sunk through the leads which coil around
the slug (See Fig. 3-10). Following the arguments presented above, the large area of the contact pads
presents a strong thermal link.

63



(K4 cm2/W).

For the tin arrays, we estimate the interface area per junction' to be 6.4 Ipm2. At 50

inK, Eqn. (3.2) gives a Kapitsa resistance of 3.8 x 1012 K/W. To allow an increase in

temperature of only AT = 2 mK, the maximum power input per junction PM= is 530 aW.

Table 3-2 gives these values for the aluminum as well as tin arrays. These arguments

suggest that we can measure the tin arrays with 2 pW input power (at 50 mK) before

sample self-heating begins to affect the sample temperature. For Cie aluminum arrays, the

corresponding power level per junction Pmax is 0.15 pW.

Table 3-2 Estimated Kapitsa resistance and power levels at 50 mK for a maximum
temperature increase of 2 mK, for tin and aluminum 50 by 70 arrays.

Material Area per J RK (K/W) Pmax. per '(W) Pmax. array (W)

Tin 6.4 Jam 3.8 x 1012 5.3 x 10-16 1.9 x 10-12

Aluminum 0.5 pm 4.8 x 1013 4.2 x 10-17 1.5 x 10-13

We can compare these estimated values with that inferred from measurements. For the

tin array sample #14, we measure the low voltage resistance Ro to have a strong

temperature dependence down to 50 mK,2 a good indication that sample heating is not a

serious limitation in reaching low temperatures. This test is limited, however, to the region

where the current-voltage (I-V) curves are continuous, roughly at powers below 100 fW

total power. This value of 100 fW falls below the predicted limit of Pmax, array = 2 pW.

The measurements of Ro, whose interpretation would be clouded if the sample's

temperature was significantly above that of the mixing chamber, are all made below powers

of 100 fW.

For the aluminum arrays, with sample #17 we measure temperature dependent

1The per junction area iocludes the rectangular islands (see Fig. 3-1). As a 50 by 70 array holds 3500
islands and 7000 junctions, on average each junction dissipates heat through half an island.
2 We see this temperature dependence when the sample is in a magnetic field of about 50 G.
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conductances down to 50 mK. This test is limited to a total power below 0.4 fW, below the

estimated limit of Pna, array = 0.15 pW. Again, all conductance measurements, whose

interpretation would be clouded by sample self-heating, are made below this power level.

In the microwave experiment, we see evidence of heating at the larger power levels

used. We can estimate the heating by using the sample itself as a thermometer. Previous

measurements record the temperature dependence of the sample's conductance around zero

bias--with applied microwaves, we can measure that conductance to infer the temperature.

While not completely accurate, as the microwaves may influence the conductance other than

through simple heating, it should give a rough idea of the actual sample temperature. We

will use this technique in discussing the data presented in Chapter 7.
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CHAPTER FOUR

MEASUREMENTS AND DISCUSSION ON
SUPERCONDUCTING ARRAYS

This chapter discusses the measurements and results on arrays on the superconducting

side of the superconductor-to-insulator transition. Section 4.1 deals with the basic

characteristics of the measurements: I-V curves showing depinning, critical and retrapping

currents, the low-voltage resistance R0 , and the magnetic field response. In section 4.2 we

discuss the interpretation of some results of the measurements. First, we compare aspects

of the measurements (depinning current and temperature dependence of Ro) with the

theoretical predictions. We then explain some results on vortex viscosity and critical

velocity using a model of vortex damping developed by Nakajima and Sawada (1981),

Bobbert (1992), and Geigenmtiller, et al. (1993).

4.1 Basic Array Characteristics

Before discussing the array parameters, it is important to define the notation used.

From our measurements, it appears that the arrays discussed in this chapter are

inhomogeneous: there exists a spread in the values of the normal resistance Rn and the

capacitance C of the junctions within an array. To clarify the discussion, we introduce the

notation that Rn refers to the average resistance of junctions within a non-uniform array,

while Rn represents the resistance of junctions within a uniform array (used when

discussing an array in theoretical or general terms).1 We also at times make the

1This notation also applies to all the parameters discussed: C, Ej, Ec and Ic, but is specific to this chapter
only.
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approximation that each row acts independently, i.e., each has its own critical current and

vortex energy barrier. To denote this, we use the subscript m to refer to the mth row (1 <

m < M, where M is the total number of rows). The row number is defined by the order in

which the row switches from the zero-voltage state to the gap-vol!age state [see Fig. 4-1

and the discussion following]. Hence, the critical current of the first row to switch is 'cl,

the mth row lcm, and the last row IcM. Finally, parameters denoted with primes, such as

co are used in special cases where we specifically attempt to correct for the

inhomogeneities within an array.

The samples are largely defined by several factors: the array size, the junction normal

resistance and the junction capacitance. The size of the arrays is given as M rows by N

columns, with the current direction along M (the current must travel through M junctions).

We determine k. by measuring AV/AJ at temperatures above the superconducting transition

temperature Tc, or at voltages far above the superconducting gap, and scale it by the NIM

geometric factor. To determine C for the tin arrays discussed in this chapter, we measure

the junction area using a scanning electron microscope, then convert it to a capacitance

using the factor 25 fF/im2 , as given by lansiti (1988) and Danchi (1982).1,2 Table 4-1

gives the values of k. and Cfor the arrays, as well as Ej, Ec, the junction plasma

frequency Wp, the array cize, and the average junction area.

The following three sections discuss the general features of the data. In Sec. 4.1.1 we

look at characteristic I-V curves. In Sec. 4.1.2 we show the magnetic field response of the

arrays, and in Sec. 4.1.3 we briefly discuss inhomogeneity within the array.

1This method is not as accurate as determining E from the offset voltage--the method used for the
aluminum arrays and discussed in Chapter 6. However, for the results discussed here, the capacitance only
enters our calculations as the square root of C in the plasma frequency o1, and the quality factor 8, and any
inaccuracies do not significantly affect the interpretation of the data.
2Recent work on aluminum junctions give a value of 45 fF/um2 or greater for aluminum. It is surprising
that the specific capacitances for tin and aluminum would differ by nearly a factor of two. This suggests
that the value of 25 fF/tm 2 for tin may be too small. We winl continue to use it, however, as we have no
firm basis for any other value.
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Table 4-1. Parameters for tin arrays. "D" under array size refers to the diamond pattern
discussed in Chapter 3 and Appendix A. The uncertainty in area for sample #5 is twice as
large as that for the other samples due to less accurate micrographs of the junctions.

Sample # Array Size junction "Rn C CP Ej/kB "Ec/kB Ej/Ec
gx M area (m2) (kQŽ) (fF) rad/sec (K) (K)

50x70 0.07±0.01 1.2 1.8±0.6 .x1012 18 0.5 40

2 50x70 0.07±0.01 5.0 1.8±0.6 5.4x10 11  4.3 0.5 9

3 lOxIOD 0.15±0.01 29 3.8±0.6 1.4x10 11  0.75 0.2 4

4 50x70 0.10-±0.01 24 2.5±0.6 2.2x10 11  0.90 0.4 2

5 lOx l0D 0.15±0.02 39 3.8±1.2 1.2x10 11  0.56 0.2 3

4.1.1 i V Curves

Figure 4-1 shows an I-V curve for sample #4 (a 50 by 70 array) at a temperature of 90

mK. The curve is hysteretic: increasing the current from zero, no voltage (on this scale)

appears across the array until the critical current of thefirst step Icl is reached. The voltage

then jumps in many steps to roughly 70 times the gap voltage. These steps result from

individual or multiple rows switching from a zero-voltage state to a gap-voltage state, as

has been reported by van der Zant, et al. (1988). The wide distribution of currents where

the steps occur is att, ibuted to junction inhomogeneity.

Upon decreasing the current from this state, the voltage does not drop down

immediately, but remains fairly constant until very near zero current. Then, at the

retrapping current Irl (on the order of 10 pA), the voltage drops back down to zero. This

drop also occurs in discrete jumps, but only the last fetw are discernible, and then only on

an expanded current scale. All of the samples show similai behavior.

Figure 4-2 shows three I-V curves for sample #5 at different temperatures. -I ka), at a

temperature of 2.6 K, the curve is rounded due to the strong thermal fluctuations which

cause continuous phase slips. This figure also shows our definition o, the critical current

in this terrperatu,e region [the same definition as used by lansiti (1988)]. As this vai, is

68



100

80

60

40

20

0
, I I , I ' I 1

0 200 400 600 800
I (nA)

Figure 4-1.

Current-voltage characteristics for sample #4 at 90 mK. The curve is
hysteretic, with the arrows indicating the direction of the sweeping
current. The frustration for this curve was not recorded, and for different
frustrations the I-V curves do not qualitatively change. However, the
current values where the switches occur do shift.

most likely an average over all the junctions, we denote it by Ic. Figure 4-2(b) shows the

I-V curve at a temperature of 1.8 K, the point at which hysteresis first appears (not visible

on this scale). The sharp nature of the curve makes the definition of the critical current

unambiguous. In curne (c), at a temperature of 1.2 K, the curves are hysteretic, and

resemble Fig. 4-1 in form (the point at which the two branches rejoin is not visible on this

scale). In this case, we discuss Icl, the critical current of the weakest row. Although it

might be more useful to take an average over all of the rows, we were not aware of the

importance of this and did not take enough data in order to be able to determine 7c

accurately over this temperature range.

Figure 4-3 shows 1c and I,, (per junction) as a function of temperature for samples #3
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Figure 4-2.

Series of I-V curves at different temperatures for sample #5 (integral value off). In
curve (a), taken at a temperature of 2.6 K, the curve is rounded. We define the "critical"
current as seen in the figure. Curve (b) is taken at a temperature of 1.8 K. For
temperatures above this, the curves are non-hysteretic, while for temperatures below this,
hysteresis occurs. Here, the I-V curve is sharp enough to make a unique determination of
1c. In curve (c), taken at a temperature of 1.2 K, we measure hysteretic curves (the
arrows show the direction of the sweeps--the two branches do not rejoin at the scale of
this curve). We typically define the critical current in this case as Icl, the current at
which the first row switches. The current and voltage scales to the right of (c) apply to all
three curves.

and #5, as well as a comparable single junction measured by lansiti (1988). The average

normal resistances of the two arrays are 29 and 39 kl) respectively, which bracket the

resistance of the single junction, 34 kQ. At temperatures above the point where hysteresis

sets in (- 1.8 K) the three curves track together, as one might expect if our method of

determining critical currents in this temperature range [Fig. 4-2(a)] does indeed give the

average value. For temperatures below this point, the single junction hc increases at a faster

rate than that of the arrays, and might reflect that IcI measures the critical current of the

weakest row, which is, of course. less than 1c.
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Figure 4-3.

Ic and IcI per junction vs. temperature for samples #3 and #5 and a
single junction measured by lansiti (1988). The normal resistance of the
single junction falls between that of the two arrays. Due to our method of
determining critical currents for the arrays, above the point of hysteresis (=
1.8 K) we measure lc while below it we measure IcI. The curves for the
arrays are taken at f-- 0.

lansiti (1988) gives an excellent and lengthy discussion of the shape of the curves in

Fig. 4-3, which we attempt only to summarize here for the case of a single junction. In

general, thermal fluctuations decrease Ic, as they allow for the system to be prematurely

activated out of its metastable well in the washboard potential (see Sec. 2. i .4). Less well

known is that thermal fluctuations increase I4: ramping down the current with the system in

the running or voltage state, fluctuations prematurely "knock" the system back into a

metastable well. As we increase the temperature from zero, lc largely decreases (as seen in

Fig. 4-3) and lr increases (not shown) until they converge, lc = lr, the point at which
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hysteresis disappears.1 lansiti argues that for temperatures above that where hysteresis

disappears (- 1.8 K), thermal fluctuations are so prominent that the system is prematurely

activated out of the metastable state continuously. Thus, the ubserved "critical current" in

this temperature range is in fact determined by the condition for the retrapping current ft(T)

- Ic(T.)/-c. As Iansiti discusses, Ir(T) at first increases with increasing T because of the

exponential increase in damping 1/4c. Close to To, however, the reverse is true since

1/-i c becomes constant while lc(T) drops toward zero; hence, the rise and fall in Fig. 4-3

for temperatures above T = 1.8 K.

Using higher voltage sensitivity to study the region before the first step, where all the

rows are nominally in the zero-voltage state, we see a small voltage. This voltage is

evidence for vortex motion, as the measured voltage for a single vortex is proportional to

the average vortex velocity v,

Nav=-V (4.1)

where N is the number of columns through which the vortex moves in crossing the array

(N=50), and a is the lattice spacing. Figure 4-4 shows these features, with the vertical

scale of Fig. 4-1 expanded by a factor of 1000. The I-V curves are dependent on the

frustration f. the sample develops little voltage forf= 0, where few vortices are present,

but the voltage develops much more rapidly for higherf, where there are more vortices.

Fol all the values of frustration, no voltage develops until a certain value of current is

exceeded, which we identify as the depinning current for the weakest row Idl. In general,

the depinning current is a measure of the pinning barrier Eb: the vortices are pinned until

forced over the barrier by a sufficiently strong bias current [in the absence of thermal

activation, which we believe is negligible at 50 mK (see Sec. 3-4)]. For currents stronger

llansiti (1988) also includes Zener tunneling in discussing the low-temperature behavior of ko which we
will not go into here.
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Current-voltage characteristics for sample #4 at 50 inK, before the first
step. The vertical scale has been expanded by roughly a factor of 1000
over Fig. 4-1. The different curves are for different values of frustrationf,
fromf- 0 tof= 0.22.

than Id, the system is in a flux flow regime, with damping largely determining the vortex

motion. We will discuss this damping mechanism in Sec. 4.2.3.

For currents less than Id, a vortex can still move from well to well by thermal activation.

Making the direct analogy between single junctions and vortices in an array (shown in Sec.

2.2), we follow the work of Ivanchenko, et al. (1968) and lansiti, et al. (1989b) to show

that this thermal activation is marked by a linear I-V curve around zero bias. This allows us

to define a low-voltage resistance Ro. In Fig. 4-5 we see an I-V curve at 0.7 K which

shows the linear slope To (as with the normal state resistance, what we measure is in some

sense the average value for the array).

For single junctions, the presence of both a measured voltage for I < Ic and hysteresis is

73



vIrl 
ICl

~25 g~V

. 25 nA

Figure 4-5.

I-V characteristics at an expanded scale for sample #4 at a temperature
of T = 0.7 K and a frustration off = 0. This figure shows the definition of
the zero-bias resistance RoI as well as the critical and retrapping currents
of the first row.

not explained by the RCSJ model. Ideally for I < Ic, the system remains trapped in a

potential well with V = 0. At lc, it escapes and runs free, leading to a measured voltage of

the superconducting gap. That Iansiti (1988) measures both a voltage and hysteresis

implies that for I < Ic the system escapes its well, but is somehow damped back into the

next wel (or a subsequent one) of the washboard potential. Johnson, er al. (1990)

explains this damping mechanism in terms of radiative losses down the leads. For arrays,

however, junctions are isolated from the leads by other, high impedance junctions, so these

radiative losses are thought to be suppressed. Vortices have a damping mechanism,

though, with no analog in single junctions. This mechanism, described in Sec. 4.2.3,

provides the same role as radiative losses in explaining why we measure both hysteresis

74



104

104

Ig 102 single junctionE) #1

L-B- #2
101 - #3

-s-#4
-a-#5

10° , ,0, , , ,, , ,

0 1 2 3 4 5 6
Temperature (K)

Figure 4-6.

The low-voltage resistance Ro vs. temperature for samples #1 through
#5 (f- 0) and the single junction measured by Iansiti (1988).

and a voltage for I < Ic.

Figure 4-6 shows the temperature dependence of R.o for samples #1 through #5 as well

as that for the single junction measured by lansiti (1988). To falls off from the normal

resistance as we lower the temperature below To, as there become fewer thermally-activated

phase slips which lead to resistance. For the single junction, Ro falls in a similar fashion,

though not quite as quickly as arrays with comparable junction normal resistances, samples

#3 and #5. We will discuss the temperature dependence of Ro in detail in Sec. 4.2.2.

4.1.2 Magnetic Field Response

As we increase the magnetic field perpendicular to the array, the vortex density increases

until the independent vortex approximation breaks down. Vortices, repulsed from one
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another, will move to form a pattern which minimizes this repulsive energy. At certain

values of the frustration, this pattern becomes commensurate with the array lattice: the

checkerboard pattern in Fig. 2-5(a) is an example. Commensurate lattices theoretically may

form, for an infinite array, for any value off= p/q where p and q are integers. At the

frustration f= 1, a vortex occupies every unit cell. Except at the edges, all the currents

cancel and we recover thef= 0 state. Therefore, features in the I-V curves which are

dependent on the frustration will largely be periodic inf with period I.

Figure 4-7 shows the change in Ro with frustration for sample #4 at four temperatures.

In all four curves we clearly see the periodic nature of A Rk with the frustration. In (a), at a

temperature of 1 K, we only see minima at integer values off. In (c), at 200 mK, we see

minima at integer and half integer values off, as well as atf= + 1/3 and ± 2/3.1 In (d), at

90 inK, we see a complicated structure with many minima. This may be because at these

low temperatures, the vortices are sensitive to junction inhomogeneities, which make the

"egg-crate" potential more complicated than that described in Chapter 2. In this case,

vortices may lock into odd configurations at these low temperatures.

Figure 4-8 shows the magnetic field dependence of Icl. Here we see that lcl is the

largest forf= 0, with other peaks atf= ± 1, and small peaks atf= ± 1/2. Though taken at

50 mK, the magnetic field dependence of lcl does not show nearly as much sensitivity as

does Ro, which as we see in Fig. 4-7(d) at 90 mK has a complicated structure. This may

be because the Icl measurements are made at higher currents than the Ro measurements.

The larger forces on the vortices due to these higher currents may disrupt all but the most

robust vortex lattices.

1Minima in RTO occur because in a commensurate state, for voltage to develop, the entire vortex lattice
must move. This requires more energy than for a single vortex to move, and hence the lattice is more
strongly pinned, leading to a minimum in the voltage for a given bias current and hence the resistance.
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Figure 4-8.

Critical current lcI per junction vs. frustration for sample #4 at 50 mK.

4.1.3 Junction Inhomogeneity

For tunnel junctions, the normal resistance is predicted to be [Knorr and Leslie (1973)]

Rn = Kexp(t/t.) (4.2)
A

where A and t are the junction area and insulator thickness, and Kand to are constants. For

aluninum junctions, Knorr and Leslie (1973) experimentally measure by ellipsometry Pc

and to to be 1.5 x 0-3 f2 I.tm 2 and 1.0 A respectively.1 For tin junctions, lansiti (1988)

gives a rough estimation of to - I A, but does not give a value for c.

1Ellipsometry is based on the general principle that linearly polarized light reflected from a surface will
become elliptically polarized. The oxide thickness can be determined from the form of the elliptical
polarization.
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Junction inhomogeneities may come from many soirces, of which two significant ones

are 6ifferences from junction to junction in A and i. Table 4-1 gives the largest

uncertainties in A to be about 14%.1 This does account for some of the inhomogeneity, but

the larger source may come from differences in t. For tin junctions, we estimate t to be on

the order of 20 A. A change in t of one angstrom, or 5%, leads to a change in R. by a

factor of 2.7.

We have experimental evidence for this inhomogeneity and its magnitude. Tests on a

ID array of 10junctions, fabricated in the same way as a 2D array, show a variation of cl

of about 40%, and a standard deviation of 15% about the mean. We also have the

distribution of steps for sample #4, seen in Fig. 4-1. We will use this distribution in

discussing some results from our measurements on this array as a first attempt at explicitly

accounting for the junction inhomogeneities.

4.2 Results of Measurements

We have divided this section into five subsections. In the first, Sec. 4.2.1, we discuss

the critical and depinning currents for the array. In Sec. 4.2.2, we look at the pinning

barrier to vortex motion as inferred from the "?o measurements. Secs. 4.2.3 and 4.2.4 deal

with theoretical and experimental results on vortex viscosity, and Sec. 4.2.5 discusses the

vortex critical velocity.

4.2.1 Critical and Depinning Currents

As discussed above, at T = 0 vortices remain pinned for currents below the depinning

current Id. For I > Id, thej x B force causes the vortices to move across the array,

perpendicular to the current direction. We can compare our measured Idl, the depinning

current of the weakest row, to that theoretically predicted.

1We measure this uncertainty by measuring different junction areas within an array. Therefore, the values
quoted represcnrt a spread in areas more than an uncertainty.
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In general, Lobb, et al. (1983), give Id as

Id =- 0. 199Nico / 2 (4.3)

where ico is the theoretical unfluctuated critical current for a single junction, and N is the

number of columns in the array (N = 50 for sample #4). We estimate ico by the result,

icoRn E trA/2e (= 9. xI0-4 volts for Sn). However, as we only measure the average value

of the normal resistance, Rn, we must replace ico and Id by their average values, ico and

Id. For sample #4, Eqn. (4.3) yields Id 0= 0.199Nico/ 2 = 190 nA.

However, the depinning current we measure from Fig. 4-4 will not be Id, but ldl, the

depinning current for the weakest row. We can estimate the theoretical depinning current

of the first row Idl by multiplying the theoretical Id by the measured ratio of cI to Ic

[allowed because, from Eqn. (4.3), Id is proportional to Ic]. From Fig. 4-1, this ratio is

0.24, which gives Idl'= 46 nA.

Experimentally, at low values of frustration, the depinning current we measure is

somewhat dependent on f, which makes it difficult to compare with that calculated above.

As Fig. 4-4 shows, forf= 0.04, Idl - 55 nA, while forf greater than roughlyf-- 0.14, ldl

approaches a value of Idl 32 nA. Within the approximate method we use to take account

of inhomogeneities, these values are consistant with the estimated value of Id' = 46 nA.

4.2.2 Thermal Activation Measurements of Eb

Lobb, et al. (1983), derived Eqn. (4.3), Id =- 0.199Nico/2, from numerical simulations

determining the vortex pinning barrier Eb

Eb = 0.199Ej (4.4)

It is possible to determine Eb from thermal activation measurements. For single junctnons,
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Ivanchenko, et al. (1968) predict Ro to have the form

h hWoe (-2Ej (45)
4e k'T exT kBT )

where op = (1 / h)VjE,, is the junction plasma frequency. Extending the simple

arguments of Rzchowski, et al. (1990), outlined in Chapter 2, Eqn. (4.5) should be valid

for vortices, but with Ej replaced by 0.199 EJ in the equations for both Ro and O .I This

does not take into account vortices jumping multiple wells, which was shown to be

important in the prefactor of Eqn. (4.5) by Martinis and Kautz (1989) for single junctions.

However, because we are mostly interested in the energy barrier Eb, given approximately

by the slope of ln(RoT) vs. 11T, we will not take multiple jumps into account.

Figure 4-9 shows TOT vs. 1T for sample #4 atf- 0 andf= 0.16. The general trend is

for RTo to increase as the temperature increases, which reflects the increasing thermal

activation of vortices. The values for Ro atf = 0 are much less than those forf= 0.16

simply because of the far smaller number of vortices present. We cannot measure Ro for

the lower temperatures because it falls below our noise level, about 1 92.

From the slope of these curves, we determine the energy barrier for the f= 0.16 case for

sample #4. We must be specific, however, in what we mean by the measured energy

barrier. Because of inhomogeneities, different rows will have different barrier heights.

Vortices will most easily move in the row(s) with the weakest barrier(s). Thus, it appears

reasonable that the measured energy barrier will be the barrier of the weakest row(s), Ebl.

The slope of the curve in Fig. 4-9 gives Ebl - 1.0 EJ (= 0.9 K-kB), higher than that

predicted by Lobb, et al. (1983), Eb =- 0.199 Ej. If instead of Ej we use an estimate of

EjI (found by multiplying Ej by the ratio of Icl to 1c from Fig. 4-1), we get Ebl = 4.2

EJ 1, even farther away from Eb =- 0.199 Ej. This is to be compared with measurements

1See van der Zant (1991).
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Figure 4-9.

RoT vs. 11T for sample #4 at frustrationsf-- 0 andf= 0.16. As discussed in
the text, the slope of thef= 0.16 curve should give the vortex pinning barrier.

with Rzchowski, et al. (1990) and van der Zant, et al. (1991a), which found energy

barriers of 0.34 EJ and 2 EJ respectively. We do not have any clear explanation for the

discrepancy. However, Lobb, et al. (1983) do neglect extrinsic pinning by local

inhomogeneities and charging effects, both of which may be important.

4.2.3 Vortex Viscosity--Theory

Vortices will be damped by the resistive shunting of the junctions, the same mechanism

that damps the oscillations of single junctions. Rzchowski, et al. (1990) calculate this

damping in terms of the vortex drag coefficient 77o, defined by the equation Fdrag = r7o1,

with Fdrag the drag force and v the vortex velocity. They calculate the vortex drag
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coefficient as,

o 2 (4.6)

where 0o is the flux quantum and a is the lattice spacing.

The vortex drag coefficient is proportional to 1/R,, so we expect the damping for these

superconducting-insulator-superconducting (SIS) to be much smaller than that of the

superconducting-normal-superconducting (SNS) arrays, which can have milli-Ohm

resistances. 1 Indeed, as the junctions are underdamped, we would expect the vortex

motion to be underdamped as well.2 This would mean a hysteretic jump in voltage at the

depinning current, as vortices become unpinned and can move freely (much like the

hysteretic jump at Ic for a single junction). However, as Fig. 4-4 shows, we do not see

this hysteretic jump in voltage, but instead see a signal of overdamped motion: a smooth

increase of voltage with current.

Nakajima and Sawada (1981) predict a damping mechanism for vortices in arrays, with

no equivalent for single junctions. They found, from numerical simulations, a moving

vortex leaves a "wake" of junctions oscillating at their plasma frequencies. The moving

vortex transfers energy to these junctions, whose oscillations damp slowly due to the

shunting resistances.

Bobbert (1992) performed more detailed numerical simulations of a vortex in an array of

underdamped junctions and also found this wake. Figure 4-10 shows some of his results:

the vertical axis represents the total energy of a junction and the two lateral axes represent

the position of that junction within the array.3 In this figure, we clearly see the vortex,

moving towards the marked edge, and its wake.

1For SIS junctions, R, in Eqn. (4.6) is thought to be replaced by the quasiparticle resistance, which
theoretically goes to infinity as T --) 0. If this holds, we would expect the drag coefficient to go to zero.
2See also Eikmans and van Himbergen (1992).
3The total energy of a junction refers to the sum of its kinetic energy (1/2 CCo0

2 (do/dt)2, 0 being the
phase difference across the junction) and the potential energy (-EJ cosO).
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vortex

ii

Figure 4-10.

This figure shows a moving vortex and its wake (P. Bobbert). The
vertical axis represents junction energy, and the horizontal axes represent
position within the array. Here the vortex moves towards the marked
edge. We clearly see the wake trailing the vortex.

From his simulations, Bobbert could also calculate I-V curves, shown in Fig. 4-11.

Four curves are shown for different values of the quality factor 8 (defined by 19 = opRC,

where R is thought to be, in our case, the quasiparticle resistance). In the flux flow region

(for currents above Id but below lc, which is marked by the circles), the curves appear to

approach an asymptotic form with increasing e5. This suggests that there still exists vortex

damping even in the limit of zero junction damping.

Geigenmailler, et al. (1993), expanding on the work of Bobbert,' explicitly determined

1For Fig. 4-10. Bobbert approximated the sine term in the vortex equation of motion (Eqn. 2.25) as a
triangular wave. While qualitauvely describing the vortex motion, it fails quantitatively. For Fig. 4-11, he
used instead a truncated triangle wave, which described the dynamics much more accurately, as confirmed by
Geigenmoller, et al. (1993) who solved the equation with the full sine term.
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Figure 4-11.

Numerically simulated current-voltage curves for a 100 by 10 array for
different values of the quality factor e) (P. Bobbert). The normalization of
the vertical axis equates it to v/op, v the vortex frequency (= 1/time to
traverse one unit cell). The arrows represent current direction for the - =
20 curve, which shows hysteresis. The circles at the end of the lines mark
the position of the critical current.

the drag coefficient for this damping mechanism r/wake to be

flwo~e .•7 /tro = 0-,- CO (4.7)

where LjO is the Jospenson inductance of ajunction, defined by Ljo = 0 0 / 27rico. This

result is independent of E, as expected from Fig. 4-11.

To give an intuitive feeling of the relative strengths of the two damping mechanisms,

Geigenmfiller, et al. (1993) also write Eqn. (4.7) in terms of iro and 6,
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e
7rwake 7 Ro E > 1 (4.8)

Here, as , - 1/R - 1/9, we agin recover a 19-independent drag coefficient.

In the next section, we use the limiting form (» >> 1) of Bobbert's I-V curves in Fig.

4-11 [which gives rise to Eqns. (4.7) and (4.8)] to compare our results to his work and that

of Geigenmtiller, et al. (1993).

4.2.4 Vortex Viscosity--Experiment

In Sec. 4.1.1, Fig. 4-4 showed evidence for overdamped vortex motion.1 In that

figure,f is increased fromf-- 0 tof= 0.22 in steps of roughly 0.035. We see a regular

increase withf in the developed voltage. If the independent vortex approximation held true

for all frustrations, the curves in Fig. 4-4 should scale withf To a large extent they do,

except that the depinning current is somewhat dependent onf.

In Fig. 4-12, we take this into account in a simple way by plotting V/f vs.

I( I ldl)2 - 1 (for allf> 0). This is a reasonable choice as (1) the standard result for a

single overdamped junction for I > Ic is V - ý(I / Ic) - 1 [see, for example, Van Duzer

and Turner (1981), pg. 1713 and (2) the I-V curves from the simulations of Bobbert (1992)

in Fig. 4-11 appear to roughly follow this form. In Fig. 4-12, all the curves collapse into a

common trend, except the curve at the smallest frustration, where the uncertainties inf and

Idl are the largest. For a uniform array following this form, we would expect the curves

plotted in this fashion to be straight lines. We do not find straight lines in Fig. 4-12, so in

modeling the data it appears important to include the array inhomogeneities.

To model the curves in Fig. 4-12, we take explicit account of junction inhomogeneities

by treating the rows as separate, with the measured voltage being the sum of voltages from

each row Vm. We approximate Vm by the form Vm (I /dldm)2 -1, where Idm is the

1See also van der Zant, et al. (1991b).

86



atafr 0.0440 Data '41/
400 * Model, no fitting parameters A"'

0 Model, 1 fitting parameter S

4 200 •

• '•'f 0.07 -0.22

0

0 1 2
V(I/ Idl) 2 -1

Figure 4-12.

This figure shows the curves of Fig. 4-6 (sample #4 at 50 inK) replotted
with different axes, showing a rough collapse into a common trend.
Included are two curves which model the data as described in the text: the
filled circles give the model with no fitting parameters; with the open
circles we scale the voltage values (by a factor of 2.12) in order to
determine how well the forms of the curves match.

depinning current for the mth row,

M
V= IVm; Vm = f (4.9)

m=1

with ya constant,

From Bobbert's work in Fig. 4-11, yis given by the curves' slopes, which approach

unity (when plotted against I/Ic) in the limit of large quality factor R. From this we

estimate that
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K •Ioop / 2 (4.10)

where K is defined by the relation Id = rc/2 (from Lobb, et al. (1983), K;:- 0.199].

Taking the distribution of critical currents of the rows from Fig. 4-1, one can compute

the sum in Eqn. (4.9). However, as it appears this distribution is approximately uniform,

we can analytically determine this sum in a continuum limit

MY1, iln i+-;(4.1 1)
ldl

where M is the number of rows (M = 70) and ax describes the normalized width of the

distribution (assumed linear) of critical currents, ac= (IcM- lcI)/ci. The data in Figure 4-1

gives a-- 6.

We plot Eqn. (4.11) as the filled circles in Fig. 4-12 with no free parameters. With the

open circles, we scale the voltage values of the model by a factor of 2.12 in order to see

that the forms of the curves match reasonably well. Though only a crude approximation,

we see that this model predicts the data to within a roughly factor of two, and indicates that

the upward curvature of the data curves has a simple explanation.

4.2.5 Vortex Critical Velocity

Nakajima and Sawada (1981), and following their work Bobbert (1992), predict a

maximum vortex velocity. 1 When the vortex velocity is such that the frequency of phase

slips (of the junctions over which the vortex crosses) reaches roughly half of the plasma

frequency, they predict a succession of vortex-antivortex pairs to be created in the wake.2

1Though not applicable here as we discuss this critical velocity and row switching in the independent vortex
approximation (i.e., for small frustrations), Octavio, et al. (1993) give an excellent discussion of row-
switching for thef= 1/2 state.
2The critical value of -1/2 cop comes from Nakajima and Sawada. Bobbert and Geigenmuoller, et al. (1993)
show that the fraction of wo. actually depends on 8. See, for example, Fig. 4-11.
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Figure 4-13.

Nine "snapshots" of the supercurrent vs. position along part of the
center row of a 100 by 10 array, E = 5 (P. Bobbert). The bias current in
the numerical simulations has just been stepped up such that the vortex
now exceeds its critical velocity. The arrows in the bottom curve show the
original vortex, and the created antivortex. Time increases top to bottom,
with an interval of 4/o)p, and the division on the vertical axis is ic.

The vortices in these pairs move in opposite directions, due to oppositej x B forces, and in

turn nucleate additional pairs. This breakdown results in a row switching from a zero

voltage state to a gap voltage state.

Fig. 4-13 shows this phenomenon. What is seen is the different steps in time for a

vortex moving along the center row of the array (the horizontal axis represents the position

of a junction in the array along the center row and the vertical axis represents the

supercurrent through that junction). We see a vortex moving towards the left, nucleating a

vortex-antivortex pair: the vortex of the same sign moves along with the original one and is

difficult to see. The vortex of the opposite sign canu readily be seen moving in the opposite
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direction.

In our measurements we see evidence for this maximum vortex velocity. The data in

Fig. 4-12 show this, namely a constant value of V/f whefe the first row switches. (As the

measured voltage per vortex is proportional to vortex velocity, this maximum voltage per

vortex suggests a critical vortex velocity).

From this maximum value of V/f = 360 p.V, we can determine a measured critical

velocity and compare it with the theoretical predictions. Starting with Eqns. (4.9) and

(4.10), we approximate the voltage developed per row as Vm. Writing this voltage in

terms of the vortex velocity for the mtlh row using Eqn. (4.1), we get

a 1 M ay 2(.)
Vm -m a I 12¢o s Vt 1 (4.12)

(Do 'F f. 'D0T dm2

As this equation shows, for a given bias current, the vortex velocity will be largest for the

row which has the minimum depinning current, e.g., dla. In this row, vortices will first

exceed the critical velocity and cause the row to switch. Replacing ldin with ldl, this gives

v, = (ay / o)i 2d4 -1 with i = VIAdl. The maximum vortex velocity Vmax is just given by

vI evaluated at I = IcI, the current at which the first row switches.

To compare with theory, it is easier to discuss the vortex velocity in terms of its angular

frequency (o, where co = 2r/time it takes for a vortex to travel across one unit cell. As Co =

2nv/a, this gives o), = (27ry / 4o) i2 - 1. Using the value of yfrom Eqn. (4.10) and the

measured value of i where the first row switches (i - 2.27 from Fig. 4-12), this gives comax

- 2.8 x 1011 rad/sec. However, as we see in Fig. 4-12, this value of yoverestimates the

data by roughly a factor of two. Using a value of ywhich gives a better fit to the data, this

gives .oma - 1.5 x 1011 rad/sec. With our simple approximations, this agrees with the

estimated value of Nakajima and Sawada of 1/2 Ou - 1.1 x 1011 rad/sec.

This rough agreement should be taken lightly, however, as (1) it is unclear as to
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whether it is appropriate to compare o,=,a (defined for the weakest row m = 1) with the

average plasma frequency OP and (2) Bobbert and GeigenmUller, et al. show that the

critical fraction of wOp (1/2 according to Nakajima and Sawada) depends on e.
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CHAPTER FIVE

MEASUREMENTS AND DISCUSSION ON TRANSITIONAL ARRAYS

As discussed in the introduction, for a single Josephson junction there exists an

uncertainty relation between 0 and Q, where 0 is the difference in phases (of the

superconducting order parameter) across the junction and Q is the junction's capacitive

charge. Restating Eqn. (1.4), the form of this uncertainty relation is

AOA(Q / 2e) _> 1 (5.1)

lansiti (1988) and references therein give the simplest form of the single junction

Hamiltonian Ho as'

t'2

n,(0,-Q) = E, T - Ej coso (5.2)
e

If the Josephson energy EJ is much greater than the charging energy Ec, then Ej coso is the

dominant energy term in Eqn. (5.2) and the system dynamics are best solved by treating 0

as a well-defined variable and Q as unde•fed [we replace Q by V/C where V is related to 4

by the Josephson relation V = (h/2e) doldt.]. This is the case for the classical junctions of

the type used in the arrays discussed in chapter 4. On the othei hand, if EJ is much less

than Ec, we again recover a "classical" regime where we treat Q as the well-defined

variable (we will discuss this case in the next chapter). However, for Ej - Ec, to

I The full Hamiltonian includes a term describing the influence of the junction "environment" and a term
describing the current or voltage source.
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Table 5.1 Parameters for samples #6 and #7.

Sample -Me~a-l jui.:tion area In C Ik EclkB EjIlEr
-.. . ra( (fF) W (K) ( (K) ....

6 Sn 0.104-0.01 201 2.5±+0.6 , 0.11 0.37±0.12 0.30-±0.08

7 Al 0.007±-0.001 22.9 0,75±0.05 0.40 1.2±0.1 0.32±0.02

describe correctly the system we cannot make the simple approximation that either 0 or Q

is a well-defined classical variable. Stating this in a different fashion, from Eqn. (5.1) both

A0 and AQ will be non-negligible, i.e., the variables will experience strong quantum

fluctuations. These are the junctions we describe here.

Section 5.1 gives some of the general features of two arrays, #6 and #7, which consist of

junctions with Ej - Ec. In Sec. 5.2, we discuss the results in detail, specifically the

temperature dependence of the low-voltage resistance Ro.

5.1 General Results of Measurements

The parameters of samples #6 and #7 are given in Table 5.1. Sample #6 is a 50 by 70

tin array, similar to samples #1 - #5 discussed in the previous chapter, but with a normal

resistance nearly an order of magnitude larger (gained by allowing the junction oxide layer

to grow thicker). This relatively large normal resistance depresses Ej below E", so that

Ej/Ec is roughly 0.30.

Sample #7 is an aluminum array, also 50 by 70 unit cells, but with a smaller junction

area: 0.007 ldm2 compared to 0.10 laim2 for #6. The smaller area results in a larger charging

energy for #7. However, because its relatively low normal resistance (- 23 kM) leads to a

like increase in the Josephson energy, the two arrays have roughly the same value of EjIEc.

The general features of the I-V curves for sample #6 closely resemble those of the

samples discussed in the previous chapter, as seen in Fig. 5-1(a). We measure row
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switching and hysteresis with critical and retrapping currents. A substantial difference

between the I-V curves of #6 and those of #1 - #5, however, is that for #6 we measure a

non-zero Ro over our entire temperature range. [Figure 5-1 (b) shows an expanded view of

the low-voltage region at 50 mK.J Indeed, as R, pins at a finite value for temperatures

below - 100 inK, it appears that there exists no true "supercurrent" branch with zero

resistance, even at T = 0.

For sample #7, the current-voltage characteristics show a remarkably different behavior.

Figure 5-2(a) shows an I-V curve at a temperature of 15 mK. We measure no hysteresis or

switching events, and although one can see evidence of a critical current, the smooth nature

of the curve makes a unique value of Ic difficult to determine. Figure 5-2(b) shows the

center region of the I-V curve at an expanded scale. At the origin, we measure a voltage

gap not previously seen in samples #1 - #6 (we show the gap atf= 1/2, as it is more

pronounced at this frustration than atf= 0). This gap is thought to be similar in nature to

the Coulomb blockade measured in like single junctions [Geerligs, et al. (1989)1.1 Because

of this blockak', for small biases the array tends toward insulating behavior.

5.2 Discussion of Results

As the results for the two samples are quite different, we discuss them each in their own

section; Sec. 5.2.1 for sample #6 and Sec. 5.2.2 for sample #7. In Sec. 5.2.3, we compare

the two samples to each other, and to the relevant predictions of a theory by Fazio and

Sch6n (1991).

5.2.1 Sample #6

As seen in Fig. 5- 1(a), the I-V curves for sample #6 appear to be of a similar type to

1In single junctions, experimentally the gap is not as pronounced, thought to be due to a larger coupling to the
external environment [Cleland, et al. (1992) and Delsing, et al. (1989a)].

94



(a) Sample #6

T< 50 mK

50 mV

20 nA

(b) Sample #6, T < 50 mK

0.4 mV

I nA

Figure 5-1.

I-V curves for sample #6 at a temperature of T < 50 inK. In (a), we see
the "supercurrent" branch and the hysteretic switches to the quasiparticle
branch, as described in Chapter 4. An expanded view of the "supercurrent"
branch is given in (b), which shows a nonzero value of resistance.
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(a) Sainple 117

TI= 15 inK
f= 1/2

mV

400 pA

(h)) S:ample #7 /

T = 50 mK
f= 1/2

0 {250 pV

2 pA
0

I

1iunigrc 5-2.

I-V curves for sample #7 at a temperature of T = 15 inK. In (a) we see the
sillicrconductiiig gap, as well as remnants of a critical current. Curve (b) shows ai
exiplndcd view of ihe lregion about the origin; here we see the Coulomb blockade
itgion. "Ibe curves are at frustrationf= 1/2.
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those in the classical regime (Ej >> Ec) discussed in chapter 4. We therefore find it useful

to treat this array classically, still describing the dynamics in terms of vortex motion.

However, we allow the charging effects to act as a perturbation, i.e., we treat the

superconducting phase differences not as well localized, but as each having a spread of

values peaked about a mean. 1 We may think of these phase differences then as having

quantum fluctuations about this mean value.

As the vortex position is largely defined by the relative phases in the array, quantum

fluctuations in these phases translates to quantum fluctuations in the vortex position. There

exists, then, a non-zero probability of a vortex moving from well to well in the absence of

thermal fluctuations. The vortex will quantum mechanically tunnel through the pinning

barrier. This description, also called quantum creep, belongs to a general class of

phenomena called macroscopic quantum tunneling (MQT), as it involves the tunneling of

macroscopic variables, in this case the superconducting phase differences across each

junction.

For high enough temperatures, thermal fluctuations in the phase differences will mask

these quantum fluctuations and the array will behave classically. In this limit, we expect to

find thermally-activated vortex motion, and the low-voltage resistance Ro should follow the

Arrhenius form of Eqn. (4.4). However, for temperatures less than some cross-over value,

Tcr, the thermal activation rate will fall below that of quantum tunneling. Grabert, et al.

(1987) predict that for the highly analogous case of phase slips in a single junction, the rate

for quantum tunneling is largely temperature independent as T -4 0. This suggests that the

equivalent vortex tunneling rate and hence Ro should also become independent of

temperature in this limit.

Grabert, et al. determined this cross-over temperature, from thermal activation to

quantum tunneling, to be kBTc, - ho)p / 27r, with hcp -V.-Jci in the case of phase slips

1lansiti (1988) approximates the nature of this spread as a Gaussian function, with an rms width proportional
to the fourth root of EcjEj.
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in a single junction. Using the analogy between single junction phase slips and vortex

motion given in chapter 2 [Eqns. (2.25) and (2.26)],1 we use the Grabert, et at. value to

estimate that for vortices, Tcr is given by

kBTc, = hcoo, / 2nt (5.3)

where hwo = V8cEcEj (i'is defined by the equation Eb = xEj). For sample #6, Eqn. (5.3)

gives a cross-over temperature of roughly 40 mK if we use ic= 0.199, the Lobb, et al.

(1983) value of the pinning barrier [Eqn. (2.22a)]. Using instead Eb = 1.0 Ej, the barrier

value measured for a similar array, sample #4, we get Tcr = 100 mK.

Figure 5-3 shows Ro as a function T for sample #6. Upon decreasing the temperature

from Tc (- 4 K), Ro shows a slight increase, the origin of which is unclear. Below a

temperature of T = 1.2 K, Ro falls in a similar fashion to samples #1 - #5. However, as the

inset shows, Ro does become temperature independent as T --ý 0. The inset also shows one

of the two values of Tcr discussed above, Tcr-= 100 mK. This value appears to match the

data closely, as 100 mK sits in the middle of the transition from temperature dependence to

temperature independence. The close agreement of the theoretical and experimental cross-

over temperatures may be viewed as somewhat fortuitous, however, given that we did not

specifically measure Eb in this sample and are instead using sample #4's value.

Nonetheless, it does indicate a reasonable agreement with theory.

This evidence for macroscopic tunneling of vortices is preliminary, as the value of

frustration was not determined before an unknown event degraded this sample. However,

we do feel that the flattening off of Ro at low temperatures is a real effect and not caused by

sample self-heating. As mentioned in Sec. 3.4, upon applying a magnetic field of roughly

50 gauss, 2 we do see temnpera:,ire dependence in Ro all the way down to 50 mK; this is a

I Derived by Rzchowski, et al. (1990), and later verified by van der Zant (1991).
2By decreasing Ej and hence the energy barrier with a sufficiently strong magnetic field, we can increase
thermal activation of the vortices enough so that it dominates over quantum tunneling for our entire
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Figure 5-3.

Low-voltage resistance Ro vs. temperature for sample #6. The inset
shows an expanded view of the low-temperature data, where we see a
flattening out of Ro associated with the quantum tunneling of vortices.
The Tcr marked on the plot refers to the theoretical cross-over temperature
where the flattening should occur, as discussed in the text. The value of
frustration is not known for this curve.

good indication that sample self-heating is not a serious limitation in reaching these low

temperatures.

5.2.2 Sample #7

Figure 5-4 shows a plot of Ro vs. T for sample #7 (as with all of the samples, we

determine Ro from the slope, around zero bias, of the dc I-V curve). Upon decreasing the

temperature from Tc, Ro initially falls in a similar fashion to sample #6.1 However, below

temperature range.
I As with sample #6, we in fact measure a slight initial increase in Ro upon decreasing the temperature from
Tc. The origin of this rise is not clear.
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Figure 5-4.

The low-voltage resistance Ro vs. T for sample #7 atf= 0. Here we see
reentrant behavior at temperature r - 280 inK. For temperatures below
T*, a Coulomb gap develops, similar to that in Fig. 5-2.

some temperature T*, the resistance starts rising again. As determined by inspection of the

I-V curves, this rise reflects the development of the Coulomb blockade within the

"supercurrent" branch.1

Zaikin (1991) predicts this reentrant behavior at T*. At T = 0 and for normal resistances

greater than the quantum resistance RQ (RQ - h / 4e2 - 6.5 k92), he argues that due to the

non-negligible charging energy, all of the charges are localized (i.e., bound) on the islands

and therefore cannot contribute to the current: the array is insulating. For finite

1At temperatures below - 50 inK, Ro flatters out and becomes temperature independent. This may be due to
effects involving quantum fluctuations, similar to those discussed for sample #6. However, in this case
sample self-heating at these low temperatures has not been ruled out.
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temperatures, but less than T*, current may flow due to the thermal activation of the

charges, and the conductance rises (resistance falls) with increasing temperature. At

temperatures above r", Zaikin suggests that the charges are sufficiently delocalized

(unbound) so that the array may be treated classically in terms of vortex dynamics (hence

we see the rise in Ro with increasing temperature, similar to that found for the arrays in

Chapter 4).

At T*, Zaikin argues there exists a competition between the thermal activation of both

charges and vortices. He estimates this temperature (in the limit of Rn >> RQ) as

163 E3  ( 2jEj'
k6T*>= 16 -exp -8 (54)

Plugging in the values for Ec and Ej for sample #7, this gives T* 50 mK, which

underestimates the measured value, = 280 inK, by over a factor of 5. The reason for this

discrepancy is not clear, although the normal resistance for sample #7 is not greatly larger

than the quantum resistance (RIRQ = 3.6), and may not satisfy the limits of Eqn. (5.4), i.e.

Rn>>RQ.'

The Coulomb blockade width we measure is highly dependent on frustration. In Fig. 5-5

we see a series of I-V curves taken about the Coulomb gap for different values off at 15

inK. Though difficult to see, there does exist a gap in curve (a) atf = 0. The gap for each

of the other curves (f* 0) is clearly visible. The size of the gap is periodic in.f: thef = 1

curve resembles that of thef - 0 curve. Figure 5-6 shows this dependence on frustration

by plotting Ro vs. T for sample #7 atf - 0 andf = 1/2. We see that at the lowest

temperatures, Ro is over 2 orders of magnitude greater forf= 1/2 than forf-- 0.

1Zaikin's arguments may also apply to sample #6, where we have instead chosen to discuss the data in terms
of quantum tunneling of vortices. Using Zaikin's approach, the leveling off of R, at low temperatures we
measure would reflect a crossover to increasing Ro as T -- 0. We would not measure this increase if it
occured at temperatures below our experimental limits. From Eqn. (5.4), T* is roughly 18 mK for sample #6.
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Figure 5-5.

I-V curves showing the development of the Coulomb gap with
frustration for sample #7 at 15 inK.
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Figure 5-6.

Ro vs. T for sample #7 at two values of frustra,-on,f- 0 andf= 1/2. At
T = 0 the resistance for thef= 1/2 case is over two orders of magnitude
greater than that forf= 0.

We can explain this dependence on frustration if we allow the superconductor-to-

insulator (S-I) transition to depend on magnetic field. Fisher (1990) argues this point

theoretically, predicting that, with an applied magnetic field, one can tune an array to sit

right at the S-I boundary.' For fields greater than this critical value at T =0, the array is

insulating, and for fields below it, the array is superconducting. We cannot fully apply

these ideas to sample #7, though, as we do not measure superconducting behavior for any

frustration. 2 However, atf= 0 the array is only weakly insulating (i.e., less resistive),

1See also Granato and Kosterlitz (1990).
2Stricdy speaking, as Ro flattens off to a finite value at low temperatures, the arrays show only metallic

behavior at T = 0. However, from inspection of the Ro vs. T curves (see Figs. 5-3 and 5.4), one can determine
whether an array tends toward superconducting or insulating behavior.
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compared tof = 1/2.1 This suggests that at zero frustration, the array is just on the

insulating side of the transition. Increasingf places it more firmly on the insulating side,

leading to a more pronounced gap. Recent work by van der Zant, et al. (1992a), reports

finding this field-tuned transition in a similar array. 2 As their value of EjlEc (= 0.9) is

larger than that for #7 (- 0.32), we might expect their array to show superconducting

behavior at low frustrations; it will be more superconducting in general.

5.2.3 Comparison of the Two Samples

Fazio and Sch6n (1991) report a theoretical phase diagram for the S-I transition. 3

Figure 5-7 shows the T = 0 plane of this diagram, plotting Ej/Ec vs. al, where at -- RQ/Rn

(they treat the case of quasiparticle dissipation). The diagram consists of two phases,

insulating and superconducting. Fazio and Schrn give the critical value of Ej/Ec at the

boundary as

= a -4- , (5.5)

where a is a constant, slightly greater than or equal to 1. (In Fig. 5 -7, we take a = 1 for

simplicity.) Equation (5.5) holds for al < 0.4. For at greater than this value, the critical

value of Ej/Ec falls quickly to zero at at - 0.45. Also in Fig. 5-7 we see the placement of

samples #6 and #7.

The position of sample #6 on the phase diagram, in the superconducting phase, appears

to match the experimental results. The I-V curves, and the plot of Ro vs. T in Fig. 5-3

1 We do not measure commensurate effects with these arrays, and the maximum blockade width occurs at f=
1/2.
2They measure a 60 by 190 array with aluminum junctions similar to ours.
3 See also van der Zant, et al. (1992c).
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at (= RQ / Rn)
Figure 5-7.

Part of a phase diagram reported by Fazio and Sch~in. For T = 0, arrays above the
dashed line [described by the Eqn. (5.5)] are predicted to be superconducting, while those
below it are predicted to be insulating. The positions of samples #6 and #7 are marked by
filled diamonds (as there exists a factor of 2 uncertainty for the vertical position of
sample #7 as described in the text, we indicate the other value by an open diamond). The
error bars in the vertical direction reflect uncertainties in the capacitance measurements
(the error bars for sample #7 are smaller than that for sample #8 due to the more accurate
method of determining capacitance).

indicate that this sample does tend toward superconducting behavior as T --+ 0.1 The

position of sample #7, however, does not appear to agree with the experiments. Though #7

also lies on the superconducting side of the transition, Figs. 5-4 and 5-5 show that this

sample in fact tends toward insulating behavior in the both thef = 0 andfo 0 cases,

respectively.

1For sample #6, it appears that Ro approaches a non-zero value as T -4 0, so it can not be considered a
"superconducting" array. However. both the general form of the I-V curves and the behavior of Ro at higher
temperaures resemble that of samples #1 -#5. We therefore state this sample tends toward superconducting
behavior.
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There are at least two possible explanations for this discrepancy concerning sample #7.

First, our approximation that a = I in Eqn. (5.5) may be incorrect. A larger value of a

would push the S-I boundary out to higher values of Ej/Ec, and possibly encompass #7 on

the insulating side of the phase diagram. Taking into account the uncertainties in the values

of EJuEc for #6 and #7 (denoted by the vertical error bars in Fig. 5-7), for a = 1.6 - 1.7 the

boundary falls such that #6 lies on the superconducting side while #7 lies on the insulating

side, in agreement with the measurements.

The second explanation is that for sample #7, the value of Ec we give may be too smali

by a factor of 2. As discussed in the following chapter, for sample #7 we determine C from

the measured offset voltage Voff using local rules.1 Using global rules we get a value half

as large for C, or double Ec. This would give EflEc = 0.16 for sample #7, correctly placing

it on the insulating side of the transition. We denote this point with the open diamond in

Fig. 5-7.

Other factors which may be involved are: (1) the two samples are made with different

materials, tin and aluminum for #6 and #7, respectively, (2) as the position of the S-I

boundary is dependent on frustration, interpreting the data is hampered by not knowing the

value off for sample #6, and (3) the I-V curves for sample #6 (Fig. 5-1) indicate it to have

more inhomogeneity than sample #7 (Fig. 5-2).

However, whatever the reason for the discrepancy, it is interesting to note that Ro of the

two arrays behaves in a nearly-dual manner. Figure 5-8 shows Ro for both arrays plotted

against TITc [curve (a) shows the data for all temperatures below Tc while curve (b) shows

an expanded view of the low-temperature data]. The two curves nearly mirror each other

both in the curvature, and in the relative positions of the peaks and valleys. These curves

appear to reflect the dual nature of the conjugate variables 0 and Q.

1 We determine C differently for sample #6 (discussed in Chapter 4), so the following discusson does not
apply to it.
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Figure 5-8.

The low-voltage resistance Ro for samples #6 aid #7 vs. T/Tc. Curve
(a) shows the data for the entire temperature range (T < Tc), while curve
(b) concentrates on the low-temperature region.
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CHAPTER SIX

MEASUREMENTS AND DISCUSSION ON CHARGING ARRAYS

In this chapter we describe arrays where the charging energy E, dominates the

Josephson energy Ej. As discussed in Chapter 1, these arrays show a Coulomb blockade

at low temperatures which results in insulating behavior around zero bias. We study the

blockades of three arrays, with Ec/Ej ranging from roughly 5 to 35, in both the

superconducting and normal states.1

This chapter is divided into three sections. Section 6.1 describes the general aspects of

the I-V curves, including the dependence on applied magnetic field. Section 6.2 goes into

the determination of the array parameters, most notably the junction capacitance C and

the island capacitance-to-ground Co. In Sec. 6.3 we detail the specific results of the

measurements.

6.1 General Results

Before we begin this section on the general results of our data, it is important to

review our discussion of the nature of current flow through an array. As described in the

introduction, and again in more detail in Chapter 2, an excess charge in an array with

large EclEj polarizes neighboring islands. The charge and the resulting polarizations are

referred to as a soliton. For current to flow, (1) solitons must be able to pass through the

array from one electrode to the other, or (2) soliton-antisoliton pairs must form within the

IFor the charging arrays we find it more transparent to discuss EcSEj rather than its inverse, which is used
in the previous chapters.
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array, then dissociate, with the solitons traveling to one electrode and the antisolitons

traveling to the other. The physics of the two processes is essentially the same: in (1), a

soliton entering the array from an electrode first forms a pair with its image antisoliton,

from which it must then dissociate to be able to move through the array.

At T = 0, no thermally activated pairs are present. For current to flow, a strong enough

electric field must be applied to create pairs out of the "vacuum" and then pull them

apart. This will happen at the edge first as the electric field, given an applied voltage

across the array, is strongest there. [This is due to the presence of the island capacitance-

to-ground Co from the following argument. Away from the edge electrodes, the

capacitive coupling to ground acts to pull the island voltages to the ground voltage.

Therefore, the electric field due to an applied bias voltage is screened to the edges.

Tinkham (private communication) calculates that the form of this screening is

exponential; Vi - Vbiasexp(-xiXO), where Vi is the voltage of the ith island, Vbias is the

applied bias voltage, xi is the distance of the ith island from an edge electrode (in units of

the array lattice spacing), and Ao1 is a characteristic distance, ;o1 = ;C'7Co for C >>

Co]. Thus, in considering the threshold voltage Vt, the minimum voltage required for this

process to happen and for current to flow, we find it more phys.;,cl to discus solitons

entering the array from an electrode as in (1). For voltages below VI, called the Coulomb

blockade region, no current flows.

At higher temperatures, activated pairs will be present, both at the edges and within

the array. In discussing these thermal activation measurements, we find it helpful to use

the general concept of pair formation and dissociation, as in (2), whether it happens at an

edge or not.I

We study three arrays in this chapter, all with AI-AlOx junctions and with dimensions

50 by 70 unit cells. The array parameters are given in Table 6-1. Figure 6-1 shows I-V

ICurrently it is unclear as to whether thermally activated pair formation and/or dissociation primarily
happen at the edges or within ,'e array.
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Table 6-1. Parameters for samples #8 - #10. As discussed in Sec. 6.2, C and Ec are
determined from the offset voltage using local rules. Rn and C are per
junction.

Sample junction area Rn C Ec/kB Ej/kB Ec/Ej
# I (m 2 ) (kQ) ((F) -K

8 0.004±+0.001 24 0.47_+0.02 2.0±0.1 0.38 5.3±0.3

9 0.004±-0.001 38 0.43-_0.02 2.2±0.1 0.24 9.2±0.4

10 0.003±+0.001 126 0.38_+0.02 2.5±0.1 0.072 35±2

curves for sample #10 in (a) the normal state' and (b) the superconducting state. In the

normal state, we see the Coulomb blockade region; current does not flow at low voltages

as described above. In the superconducting state (b), we see the superconducting gap,2

which masks the smaller Coulomb blockade region. The Coulomb blockade region is

visible only at an expanded scale. We find no evidence of a critical current, which

differentiates #10 from #7, a transitional array, where we do see slight evidence of a

critical current, despite the sample's insulating behavior around zero bias. (See Fig. 5-1.)

Expanding the scale of Figs. 6-1 (a) and (b), we can more directly observe the Coulomb

blockade regions. Figure 6-2 shows these regions in the superconducting and normal

states for sample #10 at a temperature of 15 miK. [In the superconducting state, this

blockade feature is contained entirely within the superconducting gap, seen in Fig. 6-1 (b).

The horizontal scale of Fig. 6-2 is expanded by roughly a factor of 1000 over that of Fig.

6-1 (b) in order to see this feature.] Around zero bias and at low temperatures, we

measure resistances greater than 10 GQ.3 At the threshold voltage Vt, we see a sharp

onset of current.

I The superconductivity has been suppressed to zero with a large magnetic field, typically greater than 2
Tesla.
2 Thc superconducting gap extends from -2MA/e to 2MA/e for a full width of magnitude 4MAle, where M is

the number of junctions through which current must travel, and is equal to 70 for the three arrays.
3Current noise in the measuring resistor (current bias set-up) or the current preamplifier (voltage bias set-
up) limits our ability to determine resistances above this value.
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Figure 6-2.

Blow up of the center region of the I-V curves shown in Fig. 6-1 (sample #10 at 15 mK).
Here we clearly see the Coulomb blockade in both the superconducting and normal states.
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Figure 6-3.

Coulomb blockade for sample #10 in the superconducting state at T = 300 mK. Here
we see that the current within the blockade region is roughly linear in voltage, allowing
us to define a low-voltage conductance Go. The fluctuations on the order of 0.5 pA at
low currents are non-reproducible, and most likely due to current noise.
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Table 6-2. Dependence of V1 on frustration.

Sample # Ec/Ej IVf =0f V=f= 1/2 Al! % change
_ _ _ _ (mV) (mV) in V

7 3.1 0.01 1.0 1.0 10000

8 5.3 0.4 0.6 0.2 50

9 9.2 1.7 1.9 0.2 12

10 35 3.2 3.3 0.1 3

At higher temperatures, current may flow for V < Vt. Figure 6-3 shows the Coulomb

blockade region for sample #10 in the superconducting state at a temperature of T = 300

mK. The current within the blockade region p7- ;drs to be linear in voltage, allowing us

to define a low-voltage conductance Go. This is similar to our definition of R";

throughout this thesis we let G, = 1/Ro.

We briefly mention the effect of a magnetic field on these arrays. Though we are not

aware of any theory which predicts the effects of magnetic field on an array with large

Ec/Ej, these data provide an indirect measure of the importance of superconducting

coupling, and may serve as an intuitive aid. As we learned with sample #7 in the

previous chapter, frustration affects the width of the Coulomb blockade: Vt is at a

minimum forf= 0 and a maximum forf= 1/2.1 Table 6-2 gives this change in Vt. The

most dramatic shift is for #7, a transitional array, where the blockade width atf= 1/2 is

roughly a factor of 100 larger than the value atf= 0. For #10, however, with Ec/Ej = 35,

the increase is just 3%. For these higher values of Ec/Ej, the superconducting coupling

appears only to be a weak effect. Unless explicitly stated otherwise, all of the

measurements in this chapter are given forf-= 0.

1 The data given in Chapter 5 only show that Vt is larger atf= 1/2 than atf= 0. Other data, not given, show
that Vt is maximum atf= 1/2.
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6.2 Determination of Parameters

Three important parameters in these arrays are the junction normal resistance Rn, the

junction capacitance C, the island capacitance-to-ground Co.1,2 The determination of R1 is

the same as for the previous samples; Rn equals the differential resistance at high

temperatures or voltages. However, we use a different method of determining C, which we

describe in Sec. 6.2.1. In Sec. 6.2.2 we discuss the method of determining Co.

6.2.1 Determination of C

At higher volages, the I-V curves in the normal state, such as that in Fig. 6-1(a), approach

a linear asymptote which extrapolates back to a finite offset voltage Voff at zero current. For

a single junction, the relationship between Voff and C is thought to be unambiguous3 [lansiti

(1988)],

_e

VOff = 2 single junction (6.1)

However, in 1D and 2D arrays, the relationship between Voff and C is thought to depend on

the junction's electromagnetic environment. If the system acts under so-called local rules

(the electron tunneling rate depends solely on the change in energy of the junction across

which it tunnels), Geigenmioller and Schbn (1989) give the relationships as

1What we measure will be roughly the average junction Rn and C, as discussed in Chapter 4. However,
here we will not use special notation to denote these average values because (1) our measurements do not
show any direct evidence of large inhomogeneities within the arrays, and (2) any indirect evidence for a
spread in junction parameters cannot be separated from a new source of inhomogeneity, the random offset
charges on each island (which we discuss later in the chapter). At the level of our discussion, it is easiest to
treat all the junctions as uniform and associate any inhomogeneity with the offset charges.
2We did not discuss Co in regards to the arrays in which Ec is less than or on the order of Ej. For the
charging arrays, the effects of C0 are much weaker than those of C. In the superconducting arrays, the
effects of C are already small, so that the effects of Co are likely to be negligible.
3Single junctions do not serve as the best example for this effect because the blockade is usually washed
out by strong electromagnetic coupling to the environment. To measure this offset voltage in a single
junction, one must typically connect the junction to the rest of the circuit through highly resistive, on-chip
leads. See Cleland, et al. (1992).
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Voff = M ID and 2D arrays, local rules (6.2)

where M is the number of junctions through which current must travel to reach one electrode

from the other (= 70 for the three arrays). Under global rules (the tunneling rate depends on

the change in energy of all the junctions in the array), Bakhvalov, et al. (1991), give the

relationships as

Voff Ž -M 1D array, global rules (6.3a)
V~f 2C

V~ff Me 2D array, global rules (6.3b)

The factor of two difference between the 2D results [Eqns. (6.2) and (6.3b)] may be thought

of as replacing C in Eqn. (6.2), the local result, by an effective capacitance Ceff which takes

into account all of the shunting capacitances in two dimensions. Based on arguments of

superposition for an infinite square array,) Ceff= 2C (of which -5/3 C comes from the

junction and its nearest neighbors); hence the global result for the 2D array. In the ID global

case, there are no shunting capacitances, so Ceff = C and we recover the local result.2

In an attempt to choose between the two possible values of C [from a measured Voff using

Eqn. (6.2) or Eqn. (6.3b)], we compare it with that determined from the junction area. For

sample #10, the measured offset of Voff= 15 mV gives C = 0.37 fF using local rules, or =

0.19 fF using global rules. The nominal junction area determined using a scanning electron

microscope is 0.004 ± 0.001 j.tm 2. Thus, our data imply a specific capacitance of 93 fF/im 2

'The classic problem involves an infinite square array of resistors with identical resistance r. Using
superposition of currents, one can show that the resistance between adjacent lattice points is r/2. The
argument for capacitors is analogous, and leads to a capacitance 2C.
2 Subtle effects involving Co make the global results only approximate; hence the "-" signs. For more
information on ID arrays see Delsing (1992) and Kuzmin, et al. (1989).
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Table 6-3. Data on arrays measured by Geerligs (1990) (all with A1-AlOx junctions-and with
dimensions of 190 by 60 unit cells). Capacitances are determined from offset
voltages, using Eqn. (6.2) (local rules).

sample junction Rn E iEJ specific cap.
area (Lm2) (kf2 _ (fF/gm2 )

G 0.04 129 5.6 58

H 0.01 15.3 1.6 100

I1 0.01 14.1 1.3 110

J 0.01 9.7 0.82 120

12 0.02 8.0 0.29 140

using local rules, or 46 fF/!.m 2 using global rules. For comparison, Geerligs, et al. (1989)

quote 110 fF/p.m 2, while the Delsing, et al. (1992) quote 45 fF/Am 2 . The latter value is based

on two measurements: (1) measurements of Fiske steps on large Nb-Al-AlOx-Al-Nb

junctions by Lichtenberger, er al. (1989), which give 45 ± 5 fF/p.m 2, and (2) measurements of

offset voltages and areas on two-junction bybtems by Tuominen, et al. (1992), using global

rules,1 on junctions nominally identical to ours, which also appear to give this value. The

Geerligs value is also based on measurements of offset voltages and areas, determining C

from Eqn. (6.2), using local rules. They average a large number (> 10) of samples, both

single junctions and arrays, with junctions similar to ours. Table 6-3 gives the specific

capacitances for the five 2D arrays reported by Geerligs (1990). Here we see that Geerligs

measured a wide spread in specitic capacitances for arrays, ranging from 58 fF/pm 2 to 140

fF/plm 2. The value for sample G is low in part due to the thicker oxide layer required to have

such a large normal resistance despite the larger junction area. 2 There does appear to be a

correlation between the specific capacitance and both Ec/Ej and Rn. The reason for this is

Iln ths system, due to the small number of junctions it is believed that global rules should apply. See
Averin and Likharev (1991).
2We can calculate the oxide layer thickness using Eqn. (4.1) Ifrom Knorr and Leslie (1973)]. We get for
sample H, : - 11.5 A, while for sample G, t - 15 A. This increase in thickness from H to G results in a
decrease in specific capacitance of - 23%, about half the measured decrease (from Table 6-3) of 42%.

116



unclear at this time.

Choosing global or local rules appears to depend on which value of specific

capacitance we choose. A further puzzle arises from comparison with the data of

Delsing, et al. on arrays similar to ours, in which a Voffper junction of 350 PV was

observed, compared to our value of 214 g.V for sample #10, while the nominal area of

their junctions was 0.005 i.Lm2 compared to our nominal area of 0.004 .rn 2 . Thus,

regardless of the interpretation rule, their Voff implies a substantially smaller capacitance

for a junction of equal or larger area. Delsing, et al. find good consistency of their data

with the local rule using the 45 fF/gm2 specific capacitance. Our data also support that

rule, but only if we presume that our effective junction areas are substantially larger than

the nominal values because of edge contributions, or else accept the larger Geerligs value

for the specific capacitance, presuming we have more geometry-dependent stray

capacitance than in the Delsing work.

This issue remains unresolved, but we proceed on the basis that the appropriate C is

determined by the local rules case, Voff = Me/2C. We choose this for two reasons: (1) to

remain consistent with the Delft1 and Gbteborg 2 groups, who use local rules, and (2) as

we measure Voff in a high-current regime, the use of local rules is plausible from the

following argument. Consider a single tunneling event; under global rules, the electron

tunneling rate depends on the change in energy of the whole system. However, if there is

a large current passing through the array, this change in energy may rapidly fluctuate

because of tunneling transitions of other electrons. The single electron then would not

"know" how its tunneling would effect the energy of the whole system, and thus global

rules would appear inappropriate.

IMooij, et al. (1990).
2Delsing, er al. (1992).
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Figure 6-4.

Change in Vt vs. Vg, the voltage between the array and the ground
plane, for sample #10 at 15 mK in the normal state. Here we see the
periodic oscillations whose period is a measure of the capacitance to
ground Co.

6.2.2 Determination of Co

Finally, we determine Co by applying a voltage Vg between the array and the

underlying ground plane. Upon sweeping this voltage, Mooij, et al. (1990) predict that

the threshold voltage V, should oscillate with a period of e/Co. For sample #10, we

measured these oscillations in the normal state, as seen in Fig. 6-4. V, oscillates by ±13%

(+ 0.1 mV) about its mean value, with a period of 0.12 V, corresponding to Co = 1.3 aF.

Sample #9 has oscillations of ±+18% (± 0.1 mV), also with a period of 0.12 V. For sample

#8, we did not measure the oscillation period, but only measured the change in Vt: ±16%

(± 0.08 mV). In the superconducting state for sample #10, we also measure a periodic

oscillation of Vt with the same period 0.12 V. However, the oscillations are much
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smaller, about ± 0.1% (± 0.003 mV). We are unsure as to why the magnitude of this

effect is so much smaller in the superconducting state than in the normal state.

6.3 Discussion of Results

We break up this discussion into three sections. In Sec. 6.3.1 we compare the

measured threshold voltage with that predicted by Bakhvalov, er al. (1991). Sections

6.3.2 and 6.3.3 look at the experimental and theoretical aspects of thermal activation in

these arrays.

6.3.1 Threshold Voltage V,

At low temperatures, little or no current flows below some threshold voltage V1.1 As

discussed at the start of Sec. 6.1, Vt is thought to be a measure of an edge barrier to

soliton injection. Bakhvalov, et al. (1991) determine an analytical expression for V1 in

the normal state

"-C (6.4)

This equation can in some sense be thought of as three factors: (1) e/2C, the voltage

required to move an electron across a single junction, (2) V C,, which represents the

screening of electric fields within the array, and (3) a numerical prefactor which takes

into account the 2Dnature of the arrays.

In the superconducting state, we are not aware of any theory in the literature which

predicts Vt. A simple idea put forward by M. Tinkham (private communication), is that

the system needs an additional applied voltage to break apart Cooper pairs. Following

For additional experimental data, see Chen, et al. (1992).
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Table 6-4. Theoretical and experimental values of the threshold voltage Vt.

Sample Rn C EciEj Vt, normal state (mV) Vt, s.c. state (mV)
# (kW) (fF) theory e theory exp.

8 24 0.47 5.3 1.2 0.5_+0.2 6.1 0.4±0.1

9 38 0.43 9.2 1.2 0.6_+0.1 5.9 1.7±0.2

10 126 0.38 35 1.3 1.0±0.1 5.7 3.2±0.2

the arguments of Bakhvalov, et al., Tinkham estimates this additional voltage to be of the

order of (Ale) .1 The expected Vt in the superconducting state is then the sum of

this voltage plus the threshold voltage in the normal state.

We give these values of Vt in Table 6-4 for samples #8 - #10, along with the

experimental values.2 In the normal state, we find the theoretical values to exceed the

measured values by as much as a factor of 2.4. In addition, the predicted values are all

nearly equal, while the measured ones show more variation. 3 In the superconducting

state, the predicted values of Vt again exceed the measured ones [Note that here the

theoretical values of Vt fall from sample #8 through #10 due to the change in C in the

term (A/e) VCCo ]. This qualitative discrepancy in both the superconducting and normal

states may arise because the theoretical predictions do not take into account random

inhomogeneities, such as offset charges associated with each island (thought to be due to

capacitive coupling between charged inhomogeicities in the subsut ate or insulating

barrier). In general, we expect that inhomogeneities would lower Vt, since a locally

IThis voltage is an order-of-magnitude estimate of that required to pull apart a Cooper pair at the edge of an
array. In this simple argument, the separation of a Cooper pair is unrelated to the 2D nature of the array,
and so we do not include the (I-2/yr) prefactor.
2We give the maximum values of the measured Vt, as Vt oscillates upon sweeping the voltage between the
array and the ground plane. For sample #8 in the normal state, due to an oversight we did not get as
accurate a reading of Vt as we did for the other two samples. This may account for the fact that the Vt in the
normal state appears larger than that in the superconducting state.
3Empirically, in the normal state Vt appears to scale more closely with the junction normal state resistance
than with the junction capacitance, but the reason for this correlation is not clear at this time. The effect
seems too large to be accounted for by the renormalization of the capacitance by the effect of the
conductance onset above a gap, although this mechanism varies in the correct way with Rn.
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Figure 6-5.

Measured differential conductance within the Coulomb blockade
region vs. inverse temperature in the normal state. The solid lines are
given by Eqn. (6.5). The lower temperature limit is set by our ability to
measure small conductances.

weaker barrier would allow soliton entry at a lower voltage. Also, it may be significant

that the agreement in the superconducting case is best when EcIEJ is largest, since the

theoretical estimate ignores Ej completely.

6.3.2 Thermal Activation--Measurements

All the data presented above are for temperatures close to absolute zero, about 15 inK,

where the conductance Go within the gap is immeasurably small. At temperatures above

-50 mK in the normal state and -300 mK in the superconducting state, however, we do

measure a finite conductance. Making an Arrhenius plot of the logarithm of Go in the
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normal state vs. the inverse temperature (Fig. 6-5), the data fall on straight lines (sample

#8 accidentally cracked before these measurements were made on it); this suggests that

the current arises from a thermal-activation process. The straight lines in Fig. 6-5 are

given by the simple Arrhenius form

G = (.-•" -exp{-U / kBT} (6.5)\M JRn

where we measure the activation energy U (the slope of the straight lines) to be 0.50 K

and 0.58 K for samples #9 and #10 respectively. As Ec/kB for these samples has been

inferred from Voff measurements to be 2.2 and 2.5 K respectively, we see that the

activation barrier for both samples is U = 0.23 ± 0.02 Ec.

These simple results are quite distinct from the temperature dependence

G = ( -L)K-exp{-2b[(T / Tt,) _ 1]-1/2} (6.6)G M Rm zn TfT- I 66

predicted (for T > TKBT) for the Kosterlitz-Thouless-Berezinskii (KTB) transition, which

is expected theoretically if the attractive interaction between solitons dominates the

physics. Despite three adjustable parameters, K, b, and TKTB, Eqn. (6.6) gives a much

poorer fit to our data than Eqn. (6.5).

We now compare these data with data taken on arrays by two other groups. Figure 6-6

shows an Arrhenius plot for data from Mooij, et al. (1990), Delsing, et al. (1992), and our

samples #9 and #10, (The vertical axis has been scaled so that the slope of the lines gives

the activation energy in units of EclkB.) The curves are parallel, which indicates that all

four samples have roughly the same activation energy (scaled to Ec/kB). 1 Specifically,

1 The dat3 from the two other groups and sample #9 appear to have a slight upward curvature. We
determine the slope by a simple "best fit" by eye, and reflect these curvatures in the quoted uncertainties.

122



0 ' 1 9 . .* I I a . 9 i 1 1 i I ' 5 5 I I ' I . . I . .I

data from Delsing, et al.

sample #9
... sample #10=.,10

data from Mooij, et al.
-2 0 . . . . I.. , , , .. . , . , . . . , , , . ....

0 10 20 30 40
1/T (1/K)

Figure 6-6.

Logarithm of the differential conductance within the Coulomb
blockade region vs. inverse temperature (the vertical axis is scaled to
Ec/kB) for arrays from Mooij, et al. (1990), Delsing, etal. (1991), and our
samples #9 and #10, in the normal state.

the data from Mooij, et al., on an array with Ec/kB = 1K, show an activation energy of U

= 0.24+0.02 Ec, and the data from Delsing, et al., on an array with Ec/kB - 4K, show U =

0.27±+0.03 Ec.

Mooij, et al. discussed their array data in terms of a rounded KTB transition, though

their experimental data are fitted better by an Arrhenius form. The same is true of the

data of Delsing, et al., who stated explicitly that their experimental data did not fit the

KTB form, but did not note the Arrhenius fit. This fit and its significance are two of the

principal points of this chapter.

In the superconducting state, we again plot the conductance in an Arrhenius fashion
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Figure 6-7.

Measured differential conductance within the Coulomb blockade
region vs. inverse temperature in the superconducting state. Solid lines are
fits to the linear portions of the data.

(Fig. 6-7). Far enough below the superconducting transition temperature of about 1.7 K,

the data again fall on straight lines. The solid lines in Fig. 6-7 are proportional to

exp{-U' / kBT}, where U' represents the activation energy in the superconducting state.1

For samples #8, #9, and #10, the slopes are given by U' = 3.6, 3.5, and 3.5 K

respectively. These values appear to be the sum of two terms; the superconducting

energy gap (4/kB = 1.76Tc - 3.0±0.1 K) and the activation barrier for single electrons or

quasiparticles, as measured in the normal state (0.50 K and 0.58 K for samples #9 and

#10 respectively). This suggests that enough thermal energy must be present to create

I Unlike the normal-state case [see Eqn. (6.5)], there does not exist a simple prefactor to the exponential
term which fits all three curves.
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quasiparticles, which then require an extra 0.23 Ec of energy, as in the normal state, to

separate the charges onto different islands so that current can flow.

6.3.3 Thermal Activation--Theory

At the.beginning of Sec. 6.1, we discussed the nature of currents within these arrays: a

current flows when soliton-antisoliton pairs form and dissociate, with the solitons moving

to one electrode and antisolitons to the other under the influence of a bias voltage. ' Pair

formation and dissociation may occur either within the array or at an edge (where one in

the pair is treated as an image charge). The activation energy then is a measure of the

barrier pairs must overcome to form and dissociate.

From the following argument we find that the measured activation energy should

closely match the energy to form a soliton-antisoliton pair of separation one lattice

spacing, the core energy. The work required to move an electron across a junction

connecting two otherwise isolated islands is just Ec = e2I2C. However, if the islands are

part of an array, then one must replace C by an effective capacitance Ceff= 2C, as

discussed previously. 2 Hence the core energy of a pair is 0.5 Ec. What is measured as an

activation energy, however, will be half of this value as excitations can only be created in

pairs (similar to a superconductor, where it takes energy 2A to create a pair of

quasiparticles, yet activation data give a measurement of the activation energy to be A).3

The measured activation energy should then be 0.25 Ec, which closely matches our

measured value of 0.23 Ec.

This interpretation neglects the predicted logarithmic interaction between the soliton

and antisoliton (or between the soliton and an edge), as if the interaction were screened,

1 A pair forms, in an otherwise neutral array, by one electron tunneling across a junction. This leaves an
extra electron (soliton) on the island to which the electron tunneled, and a hole (antsoliton) on the island
from which the electron tunneled.
2 See footnote 1 on page 115.
3See Tinkham (1975), p. 8.
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even at short ranges. D. S. Fisher (private communication) argues that this is due to the

presence of fringing fields (see Sec. 2.4.2), so that the interaction is short range and not

logarithmic. In addition, the existence of the random, offset charges might play a role in

this screening, although they would also alter the core energy of a soliton-antisoliton pair

dependin'g on the pair's location. Another possibility is if the logarithmic interaction is

the correct description, its cutoff length, nominally A-1 = ý]CWICo (. 17 lattice spacings

for sample #10), may be significantly decreased by the screening effect of other solitons.

Since the density of thermal solitons is - exp(-U/kBT), this screening mechanism is

temperature-dependent, and would be expected to be important for all T 2! 100 inK, i.e.,

over most of the experimental range. The above argument which predicts 0.25 Ec also

neglects the influence of Co. However, as this capacitance to ground should "weaken"

the full charge of the soliton, it may account for our measured value being slightly

smaller than that predicted.

Given the simple nature of our model and also the uncertainty of a factor of two in the

definition of C (global vs. local rules), the close numerical agreement of this

interpretation with the data may be somewhat fortuitous. Nonetheless, it seems very

significant that the activation energy (normalized to Ec) measured by us matches within

10% with the values we deduce from the data of the Gbteborg and Delft groups taken on

arrays having charging energies EclkB ranging from 1K to 4K (using the same method of

determining C).

In futurt ,vork, a more satisfactory explanation may be found by numerically

computing the activation barrier in the manner of J. Martinis (private communication).

He begins by showing that, using Eqns. (2.33) and (2.34), in a simple fashion one can

calculate the total capacitive energy Earray stored in an array for any given soliton

configuration (any number, arrangement, and mixture of solitons and antisolitons).1 As

1 As this technique involves the inversion of an N x M by N x M matrix, it is somewhat limited in studying

large arrays.
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Figure 6-8.

This figure shows (a) a schematic drawing of a 15 by 15 array with the
location of the electrodes and (b), for a single soliton present, the total
capacitive energy Etotal stored in the array as a function of the soliton's
positon [J. Martinis (private communication)]. Here we see the saddle-
like potential caused by the soliton's attraction to the edge electrodes and
repulsion from free edges.

an example of how one might use this to get an activation barrier, he determines Earray

for a single soliton in an array as a function of the soliton's position. Figure 6-8 shows

this for a 15 by 15 array. This saddle-like potential graphically represents the soliton's

attraction to edge electrodes and repulsion from free edges, as already discussed. This

technique may prove valuable as it is possible to calculate pair energies, as well as

include effects such as random offset charges, island capacitances-to-ground, and

capacitances between islands which are not nearest neighbors. These calculations may

serve as a useful tool in investigating the impact of these effects. Unfortunately, it may

be difficult to use these electrostatic energy calculations to include screening effects,

which we estimate to be important over most of the experimental temperature range, as

they are dynamical in nature.

All of the above discussion focuses on the normal state. In the superconducting state,

we measure activation energies of U'CkB = 3.6K, 3.5K, and 3.5K for samples #8, #9, and
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#10 respectively. As already discussed, these values of U' appear to be the sum of A, the

superconducting energy gap, and 0.23 Eo, the activation barrier for single electrons or

quasiparticles, as measured in the normal state (suggesting that enough thermal energy

must be present to create quasiparticles, which then require an extra 0.23 Ec of energy, as

in the normal state, to separate the charges onto different islands so that current can flow).

These measurements match a theoretical calculation done by Sim~nek (1982)1 which

predicts an activation energy in the superconducting state to be the superconducting

energy gap plus one half the charging energy required for an electron to tunnel across a

junction in an otherwise neutral array. Using the simple model described above, this

gives A + 0.25Ec, almost identical to our measured result.

See Simdnek (1982), Eqn. (3.8).
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CHAPTER SEVEN

MICROWAVE IRRADIATION OF CHARGING ARRAYS

In this chapter we look at the influence of ac radiation, from 10 MHz to 20 GHz, on

the I-V characteristics of the charging arrays. Performing these measurements on sample

#9 at milliKelvin temperatures, we find that the radiation reduces the threshold voltage

and shifts the I-V curves to lower voltages, with the amount of shift roughly proportional

to the amplitude of the ac signal. These results are not explained by three known effects

found when applying high frequencies to junctions (measured in ID arrays or other

junction systems); simple averaging, single-electron tunneling (SET) oscillations, and

photon-assisted tunneling (PAT). As we do not have an alternative explanation for the

behavior of this data at this time, the results in this chapter are lef: open to interpretation.

In Sec. 7.1, we look at the I-V characteristics of sample #9 with ac radiation applied.

Section 7.2 discusses the results of the measurements and how they compare to that

expected for the three effects mentioned.

7.1 General Results

Figure 7-1 shows the zero-conductance region of the I-V curves for sample #9 at low

temperatures, in the superconducting state, for four different ac power levels at 500

MHz. 1 The power level is defined as the output power of the ac source, a Hewlett-

Packard 8341B synthesized sweeper. This power is attenuated 25 dB by fixed

1 For these curves, the mixing chamber thermometer measures temperatures below 50 inK. However, the
sample temperature may be greater. See the following discussion and Sec. 3.4.
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attenuators, and an additional amount due to line losses and reflections. As discussed in

Appendix B, which treats the subject of line losses, it is extremely difficult to determine

the actual microwave power reaching the sample, especially at frequencies above I GH7

Except for studying the sample response at v = 662 MHz (Fig. 7-6), we will not attempt

to estimate this power.

With the -50 dBm curve, the power level is small enough to represent zero applied

power. From our data, the microwaves at this frequency do not appear to affect the I-V

curves until power levels above about -20 dBm. We use very low powers to approximate

zero power because to measure the I-V curves with zero power, we must disconnect or

turn off the microwave source, which may produce transient voltage spikes large enough

to damage the junctions. As we increase the microwave power to 0, 5 and 10 dBm, the

threshold voltage Vt is reduced, and we measure a slight conductance for V < Vt. This

slight conductance may be due to heating effects: the value measured for the 10 dBm

curve corresponds to an unirradiated sample temperature of 250 inK. However, this

simple heating argument is not entirely satisfactory, as the conductance for the 0 dBm

curve corresponds to an unirradiated sample temperature of 240 mK, only slightly less

than that at ten times the microwave power. Though we do not fully understand the

microwave heating of the sample, it appears that the reduction of Vt cannot be explained

by simple heating effects; measuring the temperature dependence of Vt, without

microwaves, we find it to largely be insensitive to temperature below 500 mK (see the

lower inset in Fig. 7-2), or specifically VtIT=25OmK = VtIT=5OmK.

In Fig. 7-2, we see that the microwave irradiation not only reduces Vt,I but also shifts

the entire I-V curve, on this scale, to lower voltages. We refer to this voltage shift as AV,

which is a function of current. The sign of AV is such that a shift to lower voltages, as we

get by increasing the microwave power, is represented by a positive value of AV. These

four curves are taken at power levels of -80, -15, -5, and 3 dBm with a microwave

1Note that the sharp edges in Fig. 7-1 are not visible on this scale.
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Figure 7-2.

I-V curves in the superconducting state for sample #9 with applied microwaves
(v = 6.200 GHz for the main figure and 2.963 GHz for the upper inset) for
different power levels. The curves in the upper inset are plotted at a larger scale.
For the main curves and the upper inset, the mixing chamber sample is T < 50
inK. In the lower inset, we see two I-V curves, with no applied microwaves, at
different temperatures. The shift AV with microwave power does not appear to
have the same signature as simple heating, which tends to wash out the blockade
region, but does not systematically shift the linear part of the I-V curve above the
threshold voltage.
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frequency of 6.200 GHz at T < 50 mK (for the rest of this chapter, all temperatures refer

to the mixing chamber temperature of the dilution refrigerator). I We take the -80 dBm

curve to approximate zero applied power, as described above. The curves in the upper

inset, at an even more expanded scale, are taken at a frequency of 2.963 GHz, at 2 power

levels, -90 and -10 dBm. The lower inset shows I-V curves without any applied

microwaves, taken at temperatures of 15 and 500 mK. We include these two curves to

show the effects of a simple temperature increase which smears out the blockade region

without appearing to reduce the threshold voltage (which at higher temperatures we

define as the "knee" in the I-V curve).

Figure 7-3 shows results in the normal state: four I-V curves with power levels of -50,

-10, -5, and 0 dBm, taken at a frequency of 662 MHz and at T < 50 mK. Again, we take

the curve at -50 dBm to approximate zero applied power. Unlike the superconducting

state, at the higher microwave powers the sharp onset of current, used to define Vt,

becomes washed out. Therefore, V1 does not have a unique definition in this case.

However, as with the superconducting state, the I-V curves show an increasing shift in

voltage AV as the microwave power is increased.

This shift AV, seen in both the normal and superconducting states, does not jxrsist to

all currents, however. For large enough currents, the I-V curves at the higher microwave

powers asymptotically approach the zero-power curve. In the normal state at a

temperature of T < 50 mK, we have to apply currents on the order of milliamps to see

this. However, at higher temperatures the I-V curves reach the asymptotic form at much

lower current levels. Figure 7-4 shows three I-V curves in the superconducting state at a

temperature of T - 300 inK, at power levels of -50, -30, and -20 dBm and a frequency of

1 GHz. Here we again see the reduction of the threshold voltage V1 at zero current.

However, the two higher power curves quickly approach the -50 dBm curve.

We display the frequency dependence of the voltage shift in Fig. 7-5. (For this figure

1For Fig. 7-4 only, temperatures refer to the 3 He pot temperature of the helium-3 refrigerator.
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Figure 7-3.

I-V curves for sample #9 in the normal state with applied
microwaves (v = 662 MHz) for four different power levels. The
mixing chamber temperature is T < 50 mK.

only, we measure the shift in current for a fixed voltage as described below. For the bias

voltage we use, Al should be roughly proportional to AV.) To obtain this plot, we bias the

array with a fixed voltage Vbias > Vt, fix the microwave source output power level, sweep

the frequency, and measure the current. An increased current represents an increased AV.

Curves (a) - (c) in Fig. 7-5 show the current response in the superconducting state at T <

50 mK, for different frequency ranges, from 10 MHz to 20 GHz. Curve (d) shows the

response in the normal state at T < 50 inK, from 10 MHz to 10 GHz.

The response of the current appears to be in the form of peaks. Three prominent peaks

in both the normal and superconducting states occur at frequencies of 662 MHz, 2.963
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Figure 7-4.

I-V curves for sample #9 in the superconducting state for
applied microwaves (1 GHz) at three different power levels.
Measured in the helium-3 refrigerator, the 3He pot temperature is T
= 300 inK. The step-like nature of the curves at a fine scale is an
artifact of the method of digitizing the data.

GHz, and 6.200 GHz, which is why these frequencies were used in Figs. 7-2 and 7-3. As

we are not aware of any theory which predicts such a non-monatonic, intrinsic

dependence on frequency, a more suitable interpretation may be that the peaks are due to

resonances in the microwave injection set-up. Peaks may represent frequencies where the

transmission of microwaves to the sample is high, while dips or regions of low A[ may

represent frequencies at which the microwaves are largely reflected and do not reach the

sample. Because of this possible interpretation of the traces in Fig. 7-5, it is difficult to

make any determination of the array's response to microwaves as a function of frequency.

To look into the nature of the shift in voltage AV, we can study it as a function of the

135



900

4)1

-Z N )

-C

zj j
,-l, >

IVI



0 .8. ......

- --- 6.20 GHz
0.6 B 2.96 GHz / / //

0.4

0.2

0 0.5 1 1.5

-Microwave Power (mW 1/ 2 )

Figure 7-6.

For sample #9 in the superconducting state, we see the shift in voltage
measured at a constant current, I*(1.5Vt), as a function of the square root
of the microwave power level (at the source) for three different
frequencies. The mixing chamber temperature is T < 50 mK. The straight
lines are "least-square" fits to the data.

microwave power. First, though we need to quantify this shift as it is a function of

current. Let I*(V) represent the current as a function of voltage with no applied

microwaves. We then define AV at this current, AVII*(v). Figure 7-6 shows AVII(l.5 v,)

vs. the square root of the power at three different frequencies, 662 MHz, 2.963 GHz, and

6.200 GHz, for sample #9 in the superconducting state. The data fall on straight lines,

which suggests that the shift in voltage is proportional to the amplitude of the ac signal.

The relative slopes of the curves most likely have to do with the relative fraction of the

nominal microwave power which reaches the sample. Of the three curves, the slope is

largest for 2.963 GHz, which from Figs. 7-5(a) and (b) we see is the highest peak of the
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three (in the superconducting state). The curve for 6.200 GHz has the lowest slope, and

correspondingly the smallest peak.

As we do not know the actual microwave power reaching the sample, in Fi4. 7-6 we

define the power as the output power of the microwave source. It is difficult to even

estimate the power reaching the sample, with the difficulty increasing with increasing

frequency. However, as discussed in Appendix B, for the 662 MHz data we have

attempted to make an order of magnitude estimation (the line loss data presented in

Appendix B does not show any resonant peaks at v = 662 MHz, as does the data in Fig.

7-5, which increases the uncertainties in this value): the signal is attenuated 25 dB from

the fixed attenuators and - 10 dB from line losses and reflections for a total of - 35 dB

attenuation. Assuming the coax to have a line impedance of 50 02, 1 mW of output power

corresponds to an rms voltage at the sample of - 4 mV, larger than the measured AV at

this frequency and output power, - 0.7 mV.

The linearity of the data seen in Fig. 7-6 depends on the current level, I*(V). For

currents taken at voltages just above V, we do not get a linear relation. At higher currents

we also lose linearity, though only slightly. Figure 7-7 shows AV vs. microwave power

for two different current levels, I*(1.5 V,) and I*(2.25 Vt). The curve for 2.25 V1 does not

appear to be as linear as that for 1.5 Vt, rounding off somewhat at the lower power levels.

Finally, we look at AV in the normal state. Figure 7-8 shows AVII*( 2 . V,) in the

normal state and AVII*(1.5V,) in the superconducting state at a frequency of 662 MHz.1

Though we only have three data points in the normal state, they roughly fall on a straight

line.2 However, the straight line drawn through these three points does not extrapolate

back to the origin, as one might expect if the dependence on -IT has a physical

We choose 1* at 2.5 Vt in the normal state because we wish to study AV in a region in which it is largely
independent of current. Experimentally, in the superconducting state this region begins at voltages just
below to 1.5 V/, while in the normal state we must go to somewhat higher voltages.
2At the time of the measurements, the importance of this data was not clear to us, and so we did not take
more curves at differcnt microwave powers,
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Figure 7-7.

Shift in voltage measured at two currents, I*(1.5 VI) and r(2.25 VI), as a
function of the square root of the microwave power level (at the source) for
sample #9 in the superconducting state. The microwave frequency is 662 MHz,
and the mixing chamber temperature is T < 50 mK. The straight lines simply
connect the data points.

significance. The curve may begin to flatten out at the lower power levels, similar to that

seen in the lower curve of Fig. 7-7.

7.2 Discussion of Results

We find the dependence of the I-V characteristics on applied microwaves to be a shift

in voltage AV, with the amount of shift proportional to the amplitude of the ac signal.

This behavior cannot be explained by three possible mechanisms we might expect to

apply to this system; (a) simple averaging, (b) single-electron-tunneling (SET)
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Figure 7-8.

For sample #9, shift in voltage at a specific current, 1*(1.5Vt) in the
superconducting state and 1*(2.5Vt) in the normal state, vs. microwave
power (at the source) at a frequency of v = 662 MHz. The mixing
chamber temperature is T < 50 mK. The straight lines are "least square"
fits to the data.

oscillations,' and (c) photon-assisted tunneling (PAT).2 As we do not have an alternative

explanation at this time, we will describe these effects as motivation for future discussion.

(a) Averaging. Averaging is the most straightforward of the three effects. With it, we

treat of the array as being voltage biased, 3 with an instantaneous voltage

V(Vdc,Vac,w;t) = Vdc + Vac sin ot (7.1)

1See Averin and Likharev (1986), Delsing, et al. (1989b), Geigenmiller and Sch6n (1989) and Bakhvalov,
etal. (1991).
2See Dayem and Martin (1962), Tien and Gordon (1963), and Danchi (1982).
3With the microwave injection set-up we use, the inner and outer conductors of the microwave coax are
connected to the source in parallel. Therefore, with the ac and dc channels combined, we do not have
either a strict current or voltage bias source. We performed these measurements with the dc portion of the
circuit both nominally current and voltage biased, and found no difference in the I-V curves.
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and assume that the instantaneous current, I(Vdc, Vac, or, t), is the same function of V(t) as

in the dc case. If the apparatus used to measure the current averages over a time longer

than 2 x.c), however, it will measure an average current, !(Vdc, Vac, CO), where

27ok
i(Vdc, Vac, O) =(Vdc, Vac, 0;t)dt (7.2)

In discussing our data, it is only necessary to concentrate on the limiting case where

the dc current is linear in the dc voltage. In this case, the integral in Eqn. (7.2) of the sine

term in Eqn. (7.1) give- zero. The current will be independent of Vac and W, i.e., l(Vdc)

= I(Vdc).

Our data do not show this form, however. From the above argument we would expect

the I-V curves in Fig. 7-2 at different microwave powers (different but sufficiently small

values of Vac) in the linear regions to lie on top of one another. 1 However, we see

instead a uniform shifting of the curves in both the linear and non-linear regions. Thus

this type of averaging does not seem to explain our data.

(b) SET Oscillations. SET oscillations refers to periodic tunneling of electrons.

Though different junction systems exhibit these oscillations, we initially concentrate on

ID arrays, where they have been observed by Delsing, et al. (1989b), with junctions

similar to those in sample #9. Delsing, et al. measure this effect by voltage biasing their

arrays with both dc and ac components (the frequencies range from 0.7 to 5 GHz). In

their I-V curves, they measure slight plateaus in the current at values of

I = nev (7.3)

1Although we do not know the actual microwave power reaching the sample, experimentally the width of
the blockade region provides an upper bound to Vac. If we measure a zero or low current region for
voltages below V,, then Vac must be less than Vt. Otherwise, we would measure smearing of the blockade
region; if Vac exceeds V1, then at an arbitrarily small dc bias, the currents generated do not average to zero.
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where v is the frequency of the ac signal and n is an integer. Different values of n

correspond to the different plateaus. Experimentally, n is determined by the bias voltage,

and Delsing, et al. see plateaus up to n = 4. On the nth plateau, during every rf cycle ne

electrons move into the array from one end and ne electrons move out of the array from

the other end.

As a first approximation, a 2D array can be considered many 1D arrays in parallel.

For sample #9, the number of "parallel ID arrays" is N = 50. In this case, the currents

from each ID array, or column, add together to give

1 = Nnev (7.4)

However, there exist numerical and theoretical arguments as to why SET oscillations

may be unobservable in 2D arrays. GeigenmUller and Schbn (1989) performed numerical

simulations in which they calculated the strength of SET oscillations as a function of

array size. They studied 3 arrays, identical except for their sizes: 1 x 21 (a ID array), 3 x

21, and 7 x 21. They found strong SET oscillations in the 1 x 21 array, but found the

oscillations to weaken with increasing width. Bakhvalov, etal. (1991) performed similar

simulations and reached the same results. They argue that in 2D arrays, the oscillations

are weakened or unobservable because of differences in the current carrying channels, or

columns. Columns close to the edge do not carry current as well as those in the middle of

the array due to the strong soliton repulsion from the edges. Thus, different columns

contribute unequally to the net current, and the SET oscillations become washed out.

In our measurements we do not reveal any current plateaus in the normal state at

frequencies from 10 MHz to 20 GHz. In the superconducting state, Fig. 7-2 shows what

does appear to be slight plateaus at low microwave power levels. However, the current

values where these appear are independent of frequency, in contradiction with Eqn. (7.4),

so they appear to be unrelated to SET oscillations.

142



(c) Photon-Assisted Tunneling. In discussing photon-assisted tunneling (PAT), we

start by describing the case of a voltage-biased single Josephson junction. If we bias the

junction just below 2A/e, A being the superconducting energy gap, theoretically no

current flows at T = 0; Cooper pairs do not give a dc tunnel current for V * 0, and the

bias does.not supply enough energy to break them and create quasiparticles, which can

tunnel and contribute to a current. However, if the junction is exposed to photons of

angular frequency co, dc current may flow if the energy supplied by the photon, ha,, added

to that supplied by the bias, eVbias, is enough to break a pair, i.e., eVbias + ha) > 2A.

Experimentally, this phenomena shows up in the I-V curves as steps in the current at

voltages of

Vbias = (2A - mhto) / e (7.5)

where m is an integer which describes the number of photons involved in breaking apart a

Cooper pair: for m = 2, for example, a Cooper pair adsorbs two photons and an energy

2hwo. In the experiment on PAT by Danchi (1982), steps were visible for m = 0, 1, and 2.

We are not aware of any theory put forward to predict PAT in arrays of charging-

effect-dominated junctions. However, we might envision a similar situation to that

described above. For V < V1, not enough energy is supplied by the voltage bias to create

and pull apart soliton-antisoliton pairs. At low temperatures, where thermal energy does

not significantly contribute, no current flows. Following a similar argument to that

presented above, an absorbed photon would add enough energy to break apart the pair if

the photon energy satisfied the inequality eVbias + hto > eVt. We might then expect to

measure current steps at voltage levels of

Vbias = Vt - mho) / e (7.6)
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Experimentally, we look for these steps by applying microwaves with frequency 9.77

GHz and studying the region of the I-V curves just below Vt. At • is frequency, ho/e = 6

p±V, and is within the limits of our resolution. We do not measure any current steps other

than that at Vt. In addition, although we do see a reduction of Vt with increasing

microwave power in the superconducting state, the magnitude of this reduction is on the

order of millivolts, much too large to be described by Eqn. (7.6), unless one takes m to be

on the order of 100. While we cannot rule out processes involving large numbers of

photons, it appears that the simple description of PAT, presented here and which gives

rise to steps in the I-V curves, does not describe our data.
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CHAPTER EIGHT

CONCLUSION AND SUGGESTIONS FOR FUTURE RESEARCH

In this thesis we have presented experimental results of measurements on ten 2D

arrays of mesoscopic Josephson junctions. The junctions which form these arrays are

typically characterized by two energies, the Josephson energy Ej and the charging energy

Ec. The I-V characteristics for an array in which one energy dominates are nearly

opposite to that for arrays in which the other dominates: for Ej >> Ec, the array shows

superconducting behavior while for Ec >> Ej, we measure insulating behavior instead.

The symmetry between the two cases extends seemingly deeper. The excitations for the

two cases, vortices and solitons, share many either identical or opposite properties. Table

8-1 gives a list of many of the dualities present for the two cases. These dualities are

important in understanding the superconductor-to-insulator (S-I) transition. Although we

did not study the S-I transition directly, we attempted to learn more about it by studying

its details.

It is important to point out that this duality is broken in at least two ways: (1) with

vortices in the superconducting arrays, the array unit cells act as a lattice of pinning sites

with a pinning barrier of- 0.199 Ej; for solitons in charging arrays, far enough away

from the array edges, no such pinning barriers exist; and (2) Fazio and Schdn (1991)

predict that spin-wave excitations, coherent oscillations of the island spin variables which

propagate in a wave-like fashion in the superconducting arrays, do not have a counterpart

in the charging arrays.

Some of our specific results are the following. In the superconducting case, we

studied vortices and vortex motion in two new limits: (1) in arrays of junctions whose
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Table 8-1. Comparison of properties of superconducting and charging arrays.

Superconducting arrays Charging arrays

well-defined variable Q

characteristic energy Ej ,, 1 / Rn Ec -1 I/ C

zero-bias conduction superconducting insulating

zero-bias phenomenon supercurrent branch Coulomb blockade

excitation vortex soliton

excitation interaction potential U = Acore + 2xEj In r U A core + (Ec / 7r)ln r
predicted

excitation interaction with
free edges attract repel
edge electrodes repel attract

energy barrier to move from
site to site (far away from edges) = 0.199 Ec 0

excitation induced by magnetic field electric field
predicted

existence of KTB transition yes predicted

existence of excitation
commensurate lattices yes predicted

existence of spin wave excitations yes no

ac response of junctions Shapiro steps SET oscillations

ac response of arrays "giant" Shapiro steps "giant" SET oscillations
predicted

applications of circuits made
with junctions voltage standard; current standard;

SQUID magnetometer SET transistor electrometer
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oscillations are underdamped and (2) in arrays where the island phases Oi havc quantum

fluctuations. With (1), the similarities between the single junction and vortex equations

of motion led us to believe that the vortices might show underdamped motion as well.

However, our measurements showed the vortex motion to be overdamped which led to

the experimental discovery of a new damping mechanism for vortices, not present in

single junctions. A moving vortex transfers energy to the junctions over which it travels

in the form of "wake". Thus, even if the individual ju dtions have essentially zero

damping, vortex motion will still be overdamped. With (2), we have preliminary

experimental evidence of the macroscopic-quantum-tunneling (MQT) of vortices through

the pinning barriers, a result of the quantum fluctuations in Oi.

With the charging arrays (Ec >> Ej), we studied soliton motion by looking at two

properties; the threshold voltage V1 in the zero-temperature limit, and the conduction

within the blockade region for nonzero temperatures. Our experimental values of the

threshold voltage Vt, in both the normal and superconducting states, match reasonably

well with a theoretical prediction by Bakhvalov, et al. (1991) [modified for the

superconducting case by M. Tinkham (private communication)]. Random offset charges

may account for the differences which do exist. For nonzero temperatures, our data show

that instead of the predicted Kosterlitz-Thouless-Berezirskii (KTB) soliton-antisoliton

unbinding transition, the pair formation and unbinding is better described by a simple

thermal activation process with an activation barrier of 0.23 Ec in the normal state and

0.23 Ec + A in the superconducting state. The values measured in the normal state match

that measured by Mooij, et al. (1990), who find a barrier of 0.24 Ec, and Delsing, et al.

(1991), who measure 0.27 Ec. These results are also consistent with the predicted values

of 0.25 Ec in the normal state [Tighe, et al. (1993)] and 0.25 Ec + A in the

superconducting state [Sim1nek (1982)], though only if we neglect the soliton-antisoliton

logarithmic interaction (possibly the result of screening by other pairs).
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In regards to future work, the majority of unanswered questions lie in the regions of

the transitional and charging a:-ays. The superconducting arrays are reasonably well-

understood, with the possible exceptions of ballistic motion of vortices [van der Zant, et

al. (1992b)] and the Aharonov-Casher (AC) effect, the magnetic analog of the Aharonov-

Bohm effect (with the AC effect, it is theoretically predicted that one can measure the

interference between two channels of vortices passing on opposite sides of an electric

field). 1 There is still much insight to be gained from transitional arrays, however, as a

systematic study of them is lacking. Of interest are the quantum mechanical effects,

which are greatest in this region due to large quantum fluctuations in both 0 and Q.

With the charging arrays many questions still remain open, as evidenced by the

"predicted" notations in Table 8-1. For example, while we have shown that our data does

not fit the KTB transition, we cannot rule out the possibility that the KTB model may

apply to other charging arrays, with different values of parameters such as CO/C and array

size. Also yet to be determined is whether solitons can be induced into the array with an

applied electric field (similar to how vortices are induced with an applied magnetic field).

If so, then it may be possible to form lattices of solitons commensurate with the array

lattice. The existence of soliton lattices would open up the possibility of measuring

"giant" SET oscillations: every rf cycle the entire lattice would shift by one unit cell.

In addition, with regards to soliton motion it is not entirely satisfactory that we must

neglect the logarithmic interaction in order to get a theoretical activation barrier of 0.25

Ec. A numerical study of this system, as outlined iz Chapter 6, might be useful in

addressing this point, as it can include such effects as random offset charges and stray

capacitances.

1See Aharonov and Bohm (1959), and Aharonov and Casher (1984).
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APPENDIX A

SCHEMATIC DRAWINGS OF DIAMOND ARRAYS
(a)

(b)

Figure A-1.

This figure gives two schematic drawings of the design and dimensions of samples #3,
and #5, the "10 by 10 diamond" arrays. The top drawing (a) shows the array as fabricated,
while the lower drawing (b) shows a more intuitive electrically equivalent configuration.
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APPENDIX B

LINE LOSS IN MICROWAVE INJECTION SET-UP IN DILUTION

REFRIGERATOR

In Chapter 7 we find it important to estimate the actual microwave power reaching the

array. To do so requires a knowledge of the line losses and reflections of the microwave

injection set-up. Figures B-l(a) and (b) show this set-up in detail (see also Fig. 3-13). As

shown in (a), microwaves are generated by a source at the top of the dilution refrigerator.

Traveling along coaxial cable, the microwaves pass through two fixed attenuators; a 15

dB attenuator thermally anchored to the 1K pot, and another 10 dB attenuator thermally

anchored to the mixing chamber. The microwaves then pass through dc blocking

capacitors, shown in both Figs. B-l(a) and (b). Figure B-I(b) shows the method of

feeding the microwaves into the sample. From the blocking capacitors, the two

microwave lines connect to the V+ and V- leads of the sample, which is mounted on a

header. The microwaves then pass through thin-film gold pads on the header, and

connect from the header pads to the sample pads by short sections of gold wire. The total

length of non-coaxial conductors through which the microwaves must travel is roughly 2

inches.

To measure the losses we perform two experiments. First, we measure the line loss

due to the coaxial cables and the fixed attenuators by measuring the throughput between

the microwave source and testing point A, seen in Fig. B-1 (a). Fixing the microwave

output power, typically at 0 dBm, we sweep the frequency and record the transmitted

power by the spectrum analyzer (Hewlett Packard 8562A, with frequency range 1 kHz -
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Figure B- 1.

Schematic drawings of (a) the upper portion and (b) the lower portion of the microwave injection
set-up. In (a), we show the path of the microwaves from the source at the top of the dilution
refrigerator through the fixed attenuators to the blocking capacitors, as well as the position of testing
point A (used only when the dilution refrigerator is opened up, allowing access). Drawing (b) shows
the sample and the header on which the sample is mounted, as well as the wiring used to feed in the
microwaves [the blocking capacitors are the same ones as in (a)]. Also shown is the location of testing
point B.
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Figure B-2.

Measured loss of microwave power through the coaxial cables and the fixed
attenuators vs. frequency. With the exception of a peak at 5 GHz, the loss shows
a monotonic increase with increasing frequency. The inset shows an expanded
view of data for frequencies below 2 GHz.

22 GHz). 1 The difference between the output power of the source and the measured

power at testing point A gives the line losses due to absorption and the fixed attenuators.

Figure B-2 shows this loss vs. the microwave frequency from 10 MHz to 20 GHz. With

the exception of a peak at 5 GHz, the loss monotonically increases with increasing

frequency. The inset shows an expansion of the results for frequencies below 2 GHz.

This near-monotonic increase is markedly different from the response of the sample in

the actual measurements, which as Fig. 7-5 shows, is in the form of a series of peaks.

SIn taking these measurements, we actually reverse the locations of the source and spectrum analyzer
(physically lifting the source to the top of the refrigerator is a difficult task). The determination of the loss
should not depend on the direction of the microwave transmission, however.
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Therefore, the resonances which cause these peaks most likely do not come from this

portion of the microwave injection set-up.

Next, we attempt to measure the losses from testing point A [Fig. B-1(a)) to testing

point B [Fig. B-l(b)], where the microwaves travel through non-coaxial conductors. This

will help determine the losses due to the blocking capacitors and the header wiring,

though it will not give us the losses in the on-chip leads. Experimentally, we sweep the

frequency for a fixed output power, and measure the transmitted power with a spectrum

anaiyzer as before. The difference between the output and measured powers gives the

losses. However, in this test experiment our results are complicated by the existence of

two methods that the microwaves may travel from the source to the spectrum analyzer, by

direct coupling as described above, and by radiative coupling, in which the signal is

radiated from one portion of unshielded wiring and picked up by another.

Figure B-3 shows the losses from testing point A to testing point B for frequencies

from 50 MHz to 20 GHz (the inset shows an expanded view of the results for frequencies

below 1 GHz). We show data for both the direct and radiative coupling schemes. To

measure the radiative coupling, we simply clip, right off of the header, the wire

connecting the center pin of the source and analyzer coaxial cables and repeat the

measurements as with the direct coupling. As described below, the radiative coupling is

sensitive to the relative positions of the wires, coaxial cables, and header. In clipping the

wire we attempt not to disturb anything else.

As Fig. B-3 shows, for frequencies below 1 GHz the losses with direct coupling are

generally less than 10 dB, while the radiative coupling losses decrease from - 60 dB at 50

MHz to - 10 dB at 1 GHz. Above 1 GHz, the losses of the two coupling mechanisms

generally increase, although they show a complicated pattern. From 1 to 10 GHz, the

radiative losses are often on the order of or greater than the direct coupling losses, and

above 10 r,147 the two curves track together. This suggests that for these higher

frequencies, the microwave transmission is dominated by radiative coupling. Therefore,
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Figure B-3.

Losses from testing point A [Fig. B-l(a)] to testing point B [Fig. B-
I (b)] as a function of frequency from 50 MHz to 20 GHz (the inset shows
the results for frequencies under 1 GHz). The heavier and lighter lines
represent the losses in the direct and radiative coupling schemes,
respectively, as described in the text.

in this case we cannot make a good estimation of the direct coupling losses. For

example, if the direct coupling losses at a frequency of 20 GHz were 100 dB, we would

still measure - 50 dB because of the signal carried in the radiative channel. This suggests

that in the actual experiments, the array may act as an antenna, being more influenced by

the radiated microwaves than by those fed in through the leads.

The higher frequency data in Fig. B-3 are also difficult to interpret because different

relative positions of the wires, header, and coaxial cables lead to different traces. For

example, with direct coupling at a frequency of 6.2 GHz (the frequency used in Fig. 7-2),

by moving the header to different positions we can change the losses from 25 to 40 dB.
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This can be explained only if radiative coupling is the dominant mode of transmission.

Such facts lead to large uncertainties when attempting to estimate the microwave power

reaching the array in the actual experiments.

For frequencies below 1 GHz, however, it is possible to make a reasonable estimation

of the power reaching the sample. As the inset in Fig. B-3 shows, at these frequencies

direct coupling is the dominant mode of transmission. For example, at a frequency of

662 MHz, used in Fig. 7-3, the direct coupling losses are - 5 dB while that for radiative

coupling are - 20 dB. We use this value of loss at 662 MHz, in addition with the - 30 dB

of losses from the upper portion of the microwave injection set-up (Fig. B-2) for a total of

- 35 dB in Chapter 7.
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APPENDIX C

LIST OF NAMES USED TO IDENTIFY SAMPLES

Each of the ten samples discussed has at least two names; one used only in this thesis

and a general name given at the time of measurement. In addition, different names are

used in Tighe, etal. (1991) and Tighe, etal. (1993). For aid in cross-checking this thesis

with raw data or the two references, we list all of the names used in Table C- I.

Table C-1. List of sample names used.

name used in T general name I name in name in
thesis Tighe, et al. (1991) Tighe, et al. (1993)

1 9

2 11

3 7

4 13 A

5 5

6 14 B

7 16

8 18 1

9 17 2
10 19 3
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